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Abstract:  

Automatic text categorization (ATC) is a prominent research area within Information retrieval. Through 

this paper a classification model for ATC in multi-label domain is discussed. We are proposing a new multi 

label text classification model for assigning more relevant set of categories to every input text document. 

Our model is greatly influenced by graph based framework and Semi supervised learning. We demonstrate 

the effectiveness of our model using Enron , Slashdot , Bibtex and RCV1 datasets. Our experimental results 

indicate that the use of Semi Supervised Learning in MLTC greatly improves the decision making 

capability of classifier. 
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1. INTRODUCTION 

 
The amount of textual data being produced through internet is growing faster than the ability of 
information consumers to search, digest and use it. Textual data is difficult to effectively 
understand and categorize because the relationship between its sequence of words and its content 
is less clear as compared to numerical. Such data includes technical article, memos, manuals, 
electronic mail, books, online news paper, journal articles and many other forms of texts. Thus 
text classification has become an active research topic now a day. It classifies document under a 
predefined category. Categories may be represented numerically or using single word or phrase or 
words with senses, etc. In traditional approach, classification of text was carried out manually 
using domain experts. The human expert was required to read and sort the input text document to 
predefined category or set of categories. Thus this approach requires extensive human efforts and 
error prone also. This leads to the scheme of automated text classification scenario. This 
automated text document classification facilitates ease of storage, searching, retrieval of relevant 
text documents or its contents for the needy applications. Three different paradigm exists under 
text classification and they are single label(Binary) , multiclass and multi label. Under single label 
a new text document belongs to exactly one of two given classes, in multi-class case a new text 
document belongs to just one class of a set of m classes and under multi label text classification 
scheme each document may belong to several classes simultaneously [3]. In real practice many 
approaches are exists and proposed for binary case and multi class case even though in many 
applications text documents are inherently  multi label in nature. Eg. In medical diagnosis a 
document report containing set of symptoms can belong to many probable disease categories. 
Multilabel text classification problem refers to the scenario in which a text document can be 
assigned to more than one classes simultaneously during the process of classification. Eg. In the 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.4, July 2012 

12 

process of classification of online news article the news stories about the scams in the 
commonwealth games in india can belong to classes like sports, politics , country-india etc. It has 
attracted significant attention from lot of researchers for playing crucial role in many applications 
such as web page classification, classification of news articles , information retrieval etc.  
 
Many approaches are existing to implement multi label text classifier. Supervised methods from 
machine learning are more popular amongst these. But majority of existing approaches are 
lacking in considering relationship between class labels, input documents and also relying on 
labeled data all the time for classification. In real life unlabeled data is readily available whereas 
generation of labeled data is expensive and error prone as it needs human intervention. In many 
situations the available class labels are related to each other and consideration of this relationship 
can lead to better accuracy. Also, the abundantly available unlabeled data contains the joint 
distribution over features of a input dataset which may improve accuracy of overall classification 
process when used in conjunction with labeled data. So in our proposed classification model we 
are considering the class correlations and semi supervised learning scheme to learn the classifier 
to overcome the limitations of existing approaches. We are also trying to remove redundant data 
from input dataset as it affects performance of classifier.  
 
All the existing approaches needs initial step of  text document representation[16]. The common 
approaches are vector space model using various term weighting schemes such as Boolean , word 
frequency count , term and document frequency , entropy encoding etc. All of these are popularly 
known as BOW ( Bag Of Words ) approaches[17]. Even though these are widely used but these 
ignores use of structural and semantic information in classification which may significantly 
improves accuracy. Other alternative to bag of words representation is graph based 
representation. The graph based representation offers much better document representation as it 
also considers relationship among documents in the form of edge of the graph[16]. 
 
Through our paper we are proposing a classification model which is exploiting relationship 
between input and class labels as a graph with the setting of semi supervised learning to use 
unlabeled data effectively for classification along with labeled data. Through this set up we are 
aiming at improving decision making capacity of multi label text classifier. We apply the 
proposed framework on standard dataset such as Enron, Bibtex and RCV1 and Slashdot to test the 
performance.  
 
The rest of the paper is organized as below. Section 2 describes literature related to construction 
of  multi label text classification system ; Section 3 highlights overview of graph representation . 
Section 4 describes our proposed classification model followed by experiments and results in 
Section 5 , followed by a conclusion in the last section.  
 

2. RELATED WORK / LITERATURE 

Multi label text classifier can be realized by using supervised, unsupervised and semi supervised 
methods of machine learning. In supervised methods only labeled text data is needed for training. 
Unsupervised methods relies heavily on only unlabeled text documents; whereas semi supervised 
methods can effectively use unlabeled data in addition to the labeled data[1][2].  
 
The most traditional approach towards multi-label learning decomposes the classification task 
into multiple independent binary classification tasks, one for each category. But its major 
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drawback is that it can not scale to a large number of class labels and does not exploit relationship 
among class labels while predicting class labels of test documents[6]. Another general method is 
to learn the ranking function of category labels from the labeled instances and apply it to classify 
each unknown test instance by choosing all the categories with the scores above the given 
threshold. But these methods also do not exploit relationship among class labels[10]. Few other 
popular existing methods are binary relevance method, label power set method, pruned sets 
method, C4.5, Adaboost.MH & Adaboost.MR, ML-kNN , Classifier chains method etc[20]. But 
all these are lacking the capability of handling unlabeled data ie these are based on principle of 
supervised learning and these can not exploit class relationships.  
 
Recently some new approaches for multi-label learning that consider the correlations among 
categories have been developed. Few eg. are generative model proposed by Ueda[26] , Bayesian 
model proposed by Griffiths [27] , Hierarchical structure considered by Rousu [28] , Maximum 
entropy method proposed by  Zhu[29] , Latent variable based approach proposed by McCallum. 
But all these methods are also supervised in nature. 
 
Traditional graph based semi-supervised methods only construct a graph at input instance level. It 
gives good results when there are no correlations among categories. But in many practical 
situations , there often exists relation among category labels. Therefore, in order to make use of 
the correlation information, we have not only constructed graph at input instance level but at 
category level also. 
 
While designing a multi label text classifier the major objective is not only to identify the set of 
classes belonging to given new text documents but also to identify most relevant out of them to 
improve accuracy of overall classification process. Graph based approaches are known for their 
effective exploration of  document representation and semi supervised methods explores both 
labeled and unlabeled data for classification that’s why  accuracy of multi label text classifier can 
be improved by using graph based representation of  input documents and class labels in  
conjunction with label propagation approach of  semi supervised learning[16][17].   
 
Few approaches are proposed based on the combination of  graph representation and semi-
supervised learning.  In 2006 Liu, Jin and Yan  proposed Multi-label classification approach 
based on constrained non negative matrix factorization [8]. In this approach parameter selection 
affects the overall performance of the system. Zha and Mie proposed Graph-based SSL for  multi-
label  classification in the year 2008[9]. But this approach was purely intended for classification 
of video files and not for documents. Chen,Song and Zhang proposed Semi supervised multi-
label learning by solving a Sylvester Eq in the year  2010 [10]. In this approach they constructed 
graph for input representation and class representation as well but this approach is getting slower 
on convergence when applied in the situation where large number of classes and input data exists. 
In 2009 Lee, Yoo and Choi proposed Semi-Supervised Non negative Matrix Factorization based 
approach [11].  But this approach was not specifically meant for multi-label text classification.  
Through our model we are proposing semi-supervised learning based multi-label text 
classification model in which graph based framework is employed in preprocessing step to 
improve the accuracy. 
 
In our proposed  model ,preprocessing stage exploits relationship between labeled and unlabeled 
documents by identifying structural and semantically relationship between them for more relevant 
classification through graph.; and during training stage semi supervised methods are used to 
propagate labels of labeled documents to unlabeled documents based on some energy function. 
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3. MATHEMATICAL MODEL OF PROPOSED SYSTEM 

Our overall multi label classification system S  is defined as follows: 
 
S = <D, C, T, Ø>  where  ‘D’ represents set of document corpus, ‘C’ represents set of classes, ‘T’ 
represents set of training set   consisting of  <document, class label set > pair. 
 
‘Ø’ is multi label assignment function used to predict the set of labels for unlabeled documents ∀ Ø: D → 2c. 
 
Document corpus D is represented as D = {d1,…, dn}, where n is the total number of documents in 
the document corpus. Out of these “l” no. of documents are labeled and remaining are unlabeled    
and represented by “u”.  Thus n = l + u. 
 
Every document di in turn represented as m – dimensional feature vector and represented as:  
di = ( di1, … dim). 
 
Similarly C = { C1, …. , Cn } represents set of classes. Each of the class label represents set of 
classes , Ci=<c1,..,cm>.  
 
T represents multi label training set as, T = {(d1, C1), (d2, C2), …, (dl, Cl)}. 
 
G(V,E) represents a connected graph, where V represents set of vertices corresponding to input 
document corpus. Thus total no. of vertices of graph equals to ‘n’, out of that ‘l’ no. of vertices are 
labeled and ‘u’ no. of vertices are unlabelled. The objective is to predict the labels of nodes ‘u’.  
 

4. PROPOSED ARCHITECTURE OF CLASSIFIER MODEL 

Our proposed classifier architecture works in two phases namely training phase and testing phase. 
We have used labeled as well as unlabeled data for training.  These two phases are depicted in fig. 
1 and works as follows: 

 

                                                   Fig. 1 Architecture of Classifier Model 
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3.1) Training phase: From the fig.1 a) part represents training phase. Preprocessed data is given 
as input to this phase. 

Preprocessing: This phase converts the input dataset into the form of weighted graph. The input 
data set is represented in the form of vector space model. It uses TF * IDF measure for every term. 
It constitutes of feature extraction and filtering stage. 

Feature extraction: To this sub stage, input is input document corpus, D. |D|=n  i.e.  n=l+u . as 
per mathematical model description. So given input as D, this phase constructs a graph G(V,E) 
with |V|=n. Each vertex Vi represents document instance di . Relationship between pair of vertices 
is represented by edge E. The adjacency matrix A∈Rnxn is computed to represent the edge weight 
using cosine similarity measures. We have captured the correlation among different classes by 
computing matrix [B]kxk for representing relationship between classes.  

Filtering: In this, Matrix A is sparcified and reweighed using K-nn approach and produce matrix 
W. A⇒ ∈W Rnxn . This graph sparcification can lead to improved efficiency in the label inference 
stage.  

3.1.2) Classifier training: To this phase specified graph W acts as an input. Given this graph W and 
label information. This phase infers labels of unlabeled documents. It estimates a continuous 
classification function F on W i.e.  

F∈R|v|x|c| Where |v| is number of vertices  and |c| is number of class labels. 

F: W→ ĈU …Where ĈU is estimated label set for unclassified document. 

It estimates soft labels of unlabeled doc. By optimizing the energy function by generating 
confidence matrix [P]nxn.  

3.2) Prediction phase: Prediction is made by classifier model generated by training phase. Our 
prediction policy works on the smoothness assumption of SSL which states that “If two input 
points x1, x2 are in high density region are closer to each other then so should be the 
corresponding outputs y1,y2”. Closeness between the two document instance can be identified by 
W. Relation between corresponding class labels can be computed by weighted dot product piBpj . 
If assignment of class labels pi and pj are relevant to doc. di and dj then we would expect Wi,j ≈  
piBpj and uses following smoothness function to predict the labels of unlabeled doc. 

Ø = � �W�,� − ∑  
�,��
 p�Bp��
�

�,��

 

 

5. WORKING OF PROPOSED MODEL 

Input: D={d1,….dn}, T 

Output: Labels CU  (Labels for unlabeled doc. instances) 

1. Represent input doc. Corpus D in vector space model D⇒V ∀ dj= (Wij,W2j, ….., Wtj) 

Where Wij is the weight of the word i in the doc. j and computed by tf|Df 
 

2. Constructs a weighted undirected graph G(V⇒G) represented as a adjacency matrix [A]nxn 

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.4, July 2012 

16 

 
3. Sparcify a reweighed G for noise removal 

A⇒W∈Rnxn 

 
4. Train the classifier, define energy function F to propagate soft labels to unlabeled doc. and  

F: W→ĈU  
Where Ĉ is estimated labels generate confidence score matrix 
 

5. Predict the class labels using smoothness function 

Ø = � ���,� −  ∑  ��,��
 p�Bp��
�

�,��

 

 

6. EXPERIMENTATIONS AND RESULT DISCUSSION 

In order to evaluate the performance of our proposed classification approach, we conducted 
experiments in order to- 

- Investigate the performance of our classification model based on semi supervised learning 
in terms of accuracy, F-measure, precision and recall . 

- Investigate the performance of our proposed model against few popular supervised 
methods for multi label text classification. 

We evaluated our approach under a WEKA-based [23] framework running under Java JDK 1.6 
with the libraries of MEKA and Mulan [21][22]. Jblas library for performing matrix operations 
while computing weights on graph edges. Experiments ran on 64 bit machines with 2.6 GHz of 
clock speed, allowing up to 4 GB RAM per iteration. Ensemble iterations are set to 10 for  EPS. 
Evaluation is done in the form of 5 × 2 fold cross validation on each dataset .We first measured the 
accuracy, precision, Recall after label propagation phase is over.  

 
6.1 Datasets used for Experimentations 

We tested the performance of our proposed model on four bench mark datasets namely Enron , 
Slashdot , Bibtex and Reuters.   Table I summarizes the statistics of datasets that we used in our 
experiments.  

 

TABLE  I : STATISTICS OF DATASETS 

Dataset No. of document  

instances 

No. of  Labels Attributes 

 

Slashdot 3782 22 500 

Enron 1702 53 1001 

Bibtex 7395 159 1836 
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Enron  dataset  contains email messages. It is  a subset of about 1700 labeled email messages[21]. 
BibTeX data set contains metadata for the bibtex items like the title of the paper, the authors, etc. 
Slashdot dataset contains article titles and partial blurbs mined from Slashdot.org[22].    
 
We first measured the accuracy, precision ,Recall and  after label propagation phase is over. Figure 
2 shows comparison of accuracy  measured for each dataset.  In order to evaluate the performance 
of  our classifier model using SSL approach, we compared the results of few popular supervised 
algorithm such as Binary Relevance (BR),C4.5, SVM-HF, Classifier chains method(CC), Pruned 
Sets Method (PS) and our proposed approach (referred as lblMLTC). Fig. 3 represents comparison 
of accuracy measured between our lblMLTC and other supervised approach on the same 
benchmark datasets. 
 
We used accuracy measure proposed by Godbole and Sarawagi in [13] . It symmetrically measures 
how close yi is to Zi ie estimated labels and true labels. It is the ratio of the size of the union and 
intersection of the predicted and actual label sets, taken for each example and averaged over the 
number of examples. The formula used by them to compute accuracy is as follows: 
 

∑
=










∪

∩

=

N

i ii

ii

ZY

ZY

N
Accuracy

1

1

 

 
Fig. 2 Comparison of results measured using lblMLTC on four benchmark datasets 
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Fig. 3 comparison of accuracy measured using lblMLTC and other popular supervised approaches. 

 

7. CONCLUSION  

A new multi-label text classification model using a graph based representation and semi 
supervised learning has been described. In our classification model we incorporated document 
similarity along with class label correlation in order to improve accuracy of multi label text 
classifier.We have used semi-supervised learning to utilize the unlabeled data for text 
classification.We have evaluated our classification model against small scale as well as large 
scale datasets. Experimental results show that our model offers reasonably good accuracy. 
Empirical studies show that our approach is quite competitive against supervised multi-label text 
classification techniques. Use of cosine similarity measure may ignore some aspects of semantic 
relationship between text documents which can affect accuracy. However In future, along with 
vector space model of text representation use of more robust feature extraction technique like LSI 
or NMF may be incorporated in order to reduce rate of misclassification. 
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