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ABSTRACT 

 
The aim of this paper is develop a software module to test the connectivity of various odd-sized HRs and 

attempted to answer an open question whether the node connectivity of an odd-sized HR is equal to its 

degree. We attempted to answer this question by explicitly testing the node connectivity's of various odd-

sized HRs. In this paper, we also study the properties, constructions, and connectivity of hyper-rings. We 

usually use a graph to represent the architecture of an interconnection network, where nodes represent 

processors and edges represent communication links between pairs of processors. Although the number of 

edges in a hyper-ring is roughly twice that of a hypercube with the same number of nodes, the diameter and 

the connectivity of the hyper-ring are shorter and larger, respectively, than those of the corresponding 

hypercube. These properties are advantageous to hyper-ring as desirable interconnection networks. This 

paper discusses the reliability in hyper-ring. One of the major goals in network design is to find the best 

way to increase the system’s reliability. The reliability of a distributed system depends on the reliabilities of 

its communication links and computer elements. 

 

KEYWORDS 

 
Hyper-ring Network, reliability, Network Connectivity, Network Conductivity 

 

1. INTRODUCTION 

 
Although the hypercube is quite powerful from a computational point of view, there are some 

disadvantages to its use as an architecture for parallel computation. One of the most obvious 

disadvantages is that the node degree of the hypercube grows with its size. This means, for 

example, that processors designed for an N-node hypercube cannot later be used in a 2 N-node 

hypercube. Moreover, the complexity of the communications portion of a node can become fairly 

large as N increases. For example, every node in a 1024-processor hypercube has 10 neighbours, 

and every node in a one million-processor hypercube has 20 neighbours. 

 

In this paper we present hyper-rings (HRs for short). The number of links between processors in a 

HR is roughly twice that of a HC with the same number of processors, but the proposed 

organization possesses a number of advantages over that of a HC for any N we can construct a 

HR with N processors, whereas a hypercube must contain exactly 2
n
 processors for some positive 

n (Han et al., 1988; Awad et al., 2013; Huo et al., 2010; Monton et al., 2008; Fan et al., 2014). 
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1.1 Hyper-Rings 
 
Definition: A circulant graph, G = (V, E) is called a hyper-ring with N nodes (N-HR for short) if 

V = {0, 1,…, N-1} and E = {{u, v} 1 v-u modulo N is power of 2}, (Altman, et al., 1994). We use 

a node for a processor and an edge for a link. Hyper-rings (HRs), are a multi-machine 

organization that is, in a sense, a generalization of the standard hypercube architecture. An 

example of a 11-HR is shown in Figure. 1. 

 

 

 
Figure 1. 11-HR 

 

1.2. Advantages of HRs over HCs 
 

Hyper-rings are regular graphs. Although the number of edges in a hyper-ring is roughly twice 

that of a hypercube with the same number of nodes, the diameter and the connectivity of the 

hyper-ring are shorter and larger, respectively than those of the corresponding hypercube. These 

properties are advantageous to hyper-rings as desirable interconnection networks.  

        
 

Figure 2. 16-HR and 16-HC. 

 

A number of topologies have been proposed for interconnecting processors in large scaled 

distributed system. The hypercube (HC for short) is shown in Figure 2, is one of the most popular 

and efficient networks due to its topological richness. Hyper-rings and their variations have 

appeared in literature under several different names, including an optimal broadcasting scheme. 

Altman, et al., (1997) showed that the number of links between processors in a HR is roughly 

twice that of a HC with the same number of processors, but the proposed organization processes a 

number of advantages over that of a HC. In particular, for any N we can construct, a HR with N 
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processors, whereas a hypercube must contain exactly 2n processors for some positive n. Altman 

et al., (1997) showed that advantage of HRs over HCs: 

 

• The number of processors in HRs does not have to be a power of 2. 

• The number of edges in a HR is roughly twice that of a same-sized HC. 

• HCs and complete binary trees can be directly embedded in HRs. 

 

1.3 The Number of Edges in HRs: 
 

Let N be a positive integer. The binarity of N, written bin (N), is a function whose range is 

between 0 and [Log N] that returns the largest integer K, such that N is divisible by 2k. Observe 

that any positive integer N may be represented as the following product. 

 

N = 2 bin (N) M                                                                                                                               (1) 

 

Where M is an odd number. Altman et al., (1997) showed that the number of edges in HRs does 

not grow monotonically with the number of nodes. Theorem (Altman et al., 1994).  

 

1.4 Connectivity in HRs 
 

In the case of computer networks, the edge v node connectivity corresponds to the minimum 

number of communication links or computer centres. This criterion is most meaningful if all 

centres in the network are of equal importance. Otherwise, it is desirable for certain pairs of nodes 

in the graphs to have a larger edge or node connectivity than others. The minimum number of 

nodes in any i-j cut of a graph is equal to the maximum number of node disjoint paths between 

nodes in and jn . Similarly, the edge connectivity between nodes in and jn  is equal to the 

maximum number of edge disjoint paths between that pair of nodes. Menger’s fundamental 

theorem has simplified the determination of the node and edge connectivity between any pair of 

nodes in a graph (Aiello et al., 1991).  

 

1.5 Problems of Edge Connectivity 
 

We can calculate EC (G) by finding a maximum flow on a network G1 obtained from G by 

replacing each undirected edge {u, v} in G by a pair of directed edges (u, v) and (u, v) in G
1
 and 

assigning a unit capacity to each edge of G
1
. The pairwise edge disconnecting set problems can 

then be solved using flow methods. The flow bearing paths of a flow on G1 correspond directly to 

a set of edge disjoint paths in G. The edges of a minimum cut between a pair of vertices in G
1
 

determine a minimum cardinality edge disconnecting set in G between those vertices. We can 

calculate EC (G) by selecting an arbitrary vertex v in G and calculating the minimum of EC (G, u, 

v) overall distinct vertices u in G, and the given v. 

 

1.6 Reliability in Distributed Systems 
 

One of the major goals of the reliability engineer is to find the best way to increase the systems 

reliability. Usually, the system is a reliability measure of how well a system meets its design 

objective and is expressed as a function of the reliability of the subsystems or components. Thus, 
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there are many factors that influence the reliability of a system. It is well accepted that improving 

the reliability of the system can be achieved by one or a combination of the following techniques: 

 

- reducing the complexity of the system 

- improving the reliability of components or subsystems 

- implementing large safety factors 

- using redundant components (standby, switched) 

- practicing a planned maintenance and repair schedule 

 

Many of these techniques are contradictory to others and it is extremely important to consider all 

the aspects of the system. Computing exact reliability and performing optimization is a complex 

process and some simplifying assumptions about the system network configurations are made so 

that the problem can be handled with reasonable effort. 

 

The reliability of a distributed system depends on the reliabilities of its communication links and 

computer elements, as well as on the distribution of its resources, such as programs and data files. 

Useful measure of reliability in distributed systems is the terminal reliability between a pair of 

nodes which is the probability that at least one communication path exists between these nodes. 

An interesting optimization problem is that of maximizing the terminal reliability between a pair 

of computing elements under a given budge constraint. Analytical techniques to solve this 

problem are applicable only to special forms of reliability expressions. 

 

2. RELATED WORK 

 
Hyper-cube and hyper-ring are two well-known network and appropriate for large scale 

multicomputer (Yanney et al.,1984; Raghavendra et al.,1985; Feng et al., 1996). The previous 

studies of hyper-ring and hyper-cube were limited to the case in which each node communicates 

uniformly with every other nodes. Hyper-rings and hyper-cube architectures are evaluated as 

interconnection networks for multicomputer. Comparisons are made between hyper-rings and 

hyper-cube networks under different communication types to show the advantages and 

disadvantages of these networks (Yanney et al., 1984; Raghavendra et al., 1985; Feng et al., 

1996). This paper discusses the reliability in hyper-ring. One of the major goals of the reliability 

engineer is to find the best way to increase the system’s reliability. 

 

3. ALGORITHM 

 

A graph G = (V, E) is called a hyper-ring with N nodes (N-HR for short) if V = {0,…,N-1} and E 

= {{u, v} 1 v-u modulo N is a power of 2}. We present and embedding of the n-dimensional 

hypercube into 2n-hyper-ring. 

 

3.1 Construction of HRs 
 

Let N be a positive integer. The binary of N, written bin (N), is a function whose range is between 

0 and [log N] that returns the largest integer K, such that N is divisible by 2. Observe that any 

positive integer N may be represented as the following product.  
 

      N = 
)(2 Nbin
 M                                            (2)              
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Where M is an odd number. First, let us observe a simple (non-recursive) construction of N-HRs. 

The following procedure is straightforward and needs no further explanation (Altman, et al., 

1994). Although the above is an effective and correct procedure, it gives us no insight about the 

actual number of edges placed in the HR. In addition, no obvious information about recursive 

structure relates HRs construction in this fashion. If E(N) denotes the number of edges in an N-

HR, then 
 

      E(2N) = 2E(N) + 2N                                     (3)              

 

The problem, of course, is the construction and the determination of the number of edges in the 

original N-HR. In fact, the problem may be reduced to examinations of M-HRs, where M is an 

odd positive integer in Equation (1). The non-recursive construction of N-HRs may be used for 

construction of such M-HRs, with a slight modification. Observe that for odd M of the form we 

can construct the M-HR by using the non-recursive construction procedure that ignores the last 

iteration of the inner for loop. Note that in this case the last iteration of the inner for loop 

produces the same connections as the connections produced in the first iteration of the inner for 

loop. That is, the inner for loop should be integrated one less time to produce the M-HR. For the 

construction of an arbitrary N-HR one simply needs to compute k = bin (N), determine the odd M 

in Equation (1), construct the appropriate M-HR, and recursively applied the doubling 

construction procedure exactly k times. 

 

3.2 The Number of Edges in HRs 
 

Let N be a positive integer. The binarity of N, written bin (N), is a function whose range is 

between 0 and [Log N] that returns the largest integer K, such that N is divisible by 2k. Observe 

that any positive integer N may be represented as the following product. 

 

N = 2 bin (N) M 

 

Where M is an odd number. Altman et al., (1997) showed that the number of edges in HRs does 

not grow monotonically with the number of nodes. Theorem (Altman et al., 1994). 

 

Number of edges in an N-HR, is equal to: 

 

N (Log N-1/2)-------if HW (N) = 1 

N (Log N-1/2)-------if HW (N) = 2 

N (Log N-1/2)-------if HW (N) = 7, 3 

 

Where HW (N) denotes the Hamming of weight of N. 

 

Proof: If the Hamming weight of N is 1, then N = 2
n
, n ≥ 1. Observe that during the execution of 

the nonrecursive construction procedure of N-HR, no multiple edges could possibly be 

constructed until the very last iteration of the inner for loop. During that iteration, exactly half of 

the edges would be eliminated. It follows that the number of (nonreplicated) edges when N is a 

power of 2, is N log N -N/2(log N -1/2). 

 

A Hamming weight of 2 implies that N can be decomposed into a sum of 2
p
 and 2

q
. Moreover, 

this decomposition must be unique. Because N = 2p + 2q, for each pair of nodes that were 2p and 

2q positions apart, exactly one extra edge is eliminated due to duplication in the nonrecursive 



International Journal of Information Technology Convergence and Services (IJITCS) Vol.6, No.2/3, June 2016 

6 

 

construction procedure of N-HRs. Hence, the number of edges is N[log N] - N, in this case, is 

equal to N[log N]. 

 

In the case where Hamming weight is 3 or more, the non-recursive construction procedure of HRs 

does not attempt to create any duplicated edge even if the condition is removed. Hence, the 

number of edges in this case is N[log N]. 

 

Example: Assume we have 11-HR as is shown in Figure 1. Where N is a positive integer, 

(number of nodes = n
0
 of processes) HW is the Hamming weight. 

n0 of nodes = N = 11 

(11)10 = (10 11)2 

 

The Hamming weight of N nodes = HW (11) = 3 = number of 1’s in base 2. By using theorem 1, 

we can find the number of edges in 11-HR. 

 

HW (11) = 3 

 

 In number of edges in 11-HR = N[log N] where HW (N) 7/3 

 

 In number of edges in 11-HR = N[log N]  

 Log N = Log 2 11 = 3.2 

 [3.2] = 4 

 

From number of edges in 11-HR = 11 (4) = 44 edges, now we can find the number of edges 

connected to each node.  

 

Number of edges =  number of nodes * n
0
 of edges connected to each node.  

   2 

 

In number of edges connected to each node - 2*44 = 8 edges 

                                                                          11 

 

3.3  Embedding of Hyper-Cubes into Hyper-Rings 
 

Since hypercube are commonly used networks, the study of embedding of hypercube in hyper-

rings will be useful. Altman et al., (1997) showed that for any n, the n-dimensional hypercube can 

be embedded in the hyper-ring with 2n nodes as its sub-graph where: A graph G = (V, E) with N 

nodes is called the N hyper-ring (N-HR for short) if V = {0,…,N-1} and E = {{u, v} 1 v-u 

modulo N is a power of 2}. 

 

The n-dimensional hypercube (n-HC for short) is a graph with N-2n nodes labeled by 2n binary 

numbers from 0 to 2n-1. Where there exists an edge between two nodes if and only if their binary 

representations of their labels differ by exactly one bit. The HC can be used to simulate many 

networks since it contains or nearly contains those networks as sub-graph. This is one of the main 

reasons why the HC is a powerful network for parallel computation from the structures of N-HCs 

and N-HRs, it is clear that for N = 2
n
, the N-HR contains N-HC as a sub-graph, making the HR an 

even more powerful network for parallel computation. 
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From the structures of N-HCs and N-HRs, it is clear that for N = 2n, the N-HR contains N-HC as 

a sub-graph, making the HR an even more powerful network for parallel computation. Note that 

an N-HC is embeddable into an Q-HR with stretch factor of one as long as Q ≥ N.  

 

1 - dimensional grid (size 1 x K) 

 

A 1-dimensional grid of size 1 x K can be embedded as a sub-graph into a K-HR in an obvious 

way. That is, there are no wasted nodes in the HR. Note that for HCs, if K is not a power of 2, 

e.g., K = 2m + 1, then the HC will need 2m+1 = 2K-2 nodes. 

 

2- dimensional grid (size a x b) 

 

To embed a grid of size a x b as a sub-graph into a HR, we need min (a x 2 
[Log b

], bX2
[Log a]

) 

nodes. 

 

3-dimensional grid (size a x b x c) 

 

The number of nodes required in the HR to embed a x b x c grid is 

 

min (a x 2
[Log b]

 x 2
[Log c]

, b x 2
[Log a]

 x 2
[Log c]

 x 2
[Log b]

). 

 

In general, when embedding K-dimensional grids into HRs we have one extra degree of freedom, 

i.e., the size of one of dimensions can be the same as the original grid which is not necessarily a 

power of 2. It follows that more nodes are wasted when the grid embedding is done in HCs than 

HRs (unless each of the grid dimensions is a power of 2). 
 

6. MAXIMUM FLOW FOR ODD-SIZED HRS  
 
Altman [3] showed that the edge connectivity of HR is equal to its nodal degree, which optimum. 

However, it is still an open question whether the node connectivity of an odd-sized HR is equal to 

its degree. We have attempted to answer this question by explicitly testing the node connectivity's 

of various odd-sized HRs. The maximum-flow problem is the simplest problem concerning flow 

networks. Which testing the greatest rate at which material can be shipped from the source to the 

sink without violating any capacity constraints. We shall use the classical method of Ford and 

Fulkerson for finding maximum flows. 

 

6.1 The Ford-Fulkerson method  
 
Ford-Fulkerson method for solving the maximum-flow problem. It depends on three ideas:  

 

- Residual networks  

- Augmenting paths  

- Cuts of flow networks  

 

These ideas are essential to the max-flow min cut theorem, which characterizes the value of a 

maximum flow in terms of cuts of the flow networks. The Ford-Fulkerson method is iterative. We 

start with f(u, v) = 0, for all u and v, giving an initial flow of value 0. We increase the flow value 

by finding an “augmenting path”, as a path from source S to the sink t along which we can push 
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more flow. We repeat this process until no-augmenting path can be found. This process yields a 

maximum flow.  

 
 

-Residual networks  

 
Consists of edges that can admit more net flow. Suppose we have a flow network G = (V, E) with 

source s and sink t. Let f be a flow in G, and consider a pair of vertices u and v. Residual 

capacity: is the amount of additional net flow we can push from u to v before exceeding the 

capacity  

C(f) = (u,v).  

C(f) = c(u,v)-f(u,v).  
 

-Augmenting paths  
 
Given a flow network G = (V, E) and a flow f. An augmenting path p is a simple path from s to t 

in the residual network G(f). The residual capacity of p, is the maximum amount of net flow that 

we can send along the edges of an augmenting path p.  
 

-Cuts of flow networks  
 
The ford-Fulkerson method repeatedly augments the flow along augmenting paths until a 

maximum flow has been found. The max-flow min cut theorem, tells us that a flow is maximum 

if and only if its residual network contains no augmenting path. A cut (S, T) of flow network G = 

(V, E) is a partition of V into S and T = V-S such that s S and t T. If f is a flow, then the net flow 

across the cut (S, T) is defined to be f (S, T). The capacity of the cut (S, T) is C(S, T). 

 

6.1.2 The basic Ford-Fulketson algorithm  
 
In each iteration of the Ford-Fulkerson method, we find any augmenting path p and augment flow 

f along p by the residual capacity C(p). We update the net flow f [u, v] between each pair u, v of 

vertices that are connected by an edge in either direction, we assume implicitly that f [u, v] =0. 

The capacity C (u, v) = 0 if (u, v) E. The residual capacity C (u, v) = C (u, v) - f (u, v). Frist we 

initialize the flow f to 0. The while loop repeatedly finds an augmenting path p in G(f), and 

augments flow f along p by the residual capacity C(p). When no augmenting paths exist, the flow 

f is a maximum flow.  

 

-Breadth-First search (BFS).  
 
To visit all nodes connected to node K in a graph, we put K onto a FIFO queue. Then enter into a 

loop where we get the next node from the queue. If it has not been visited, visit it and push all the 

unvisited nodes on its adjacency list. We continue doing that until the queue is empty (Alon et al., 

1987). We have used the Ford-Fulkerson method to find the maximum flow for the odd-sized 

HRs, which is related to the node-connectivity of the HRs.  
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4.  RESULTS 

 
The aim of this paper is to develop a software module to test the connectivity of various odd-sized 

HRs and attempted to answer an open question whether the node connectivity of an odd-sized HR 

is equal to its degree. We attempted to answer this question by explicitly testing the node 

connectivity's of various odd-sized HRs. We have used the Ford-Fulkerson method to find the 

maximum flow for the odd-sized HRs, which is related to the node-connectivity of the HRs. 

 

In this paper, so far we have confirmed our hypothesis for the first 1,000 odd-sized HRs. 

 

The following is some of our results for the maximum flow output for various odd-sized 

HRs.  

 
- Maximum flow for 3-HR.  
 
 

Number of edges = 3  

Augment path: 0-2  

Augment path: 0-1-2                           

Max flow = 2  

Nodal degree = 2  

                       
 

Figure 4. A 5-HR.                                       Figure 3.  A 3-HR. 

 

 

- Maximum flow for 5-HR.  
 

Number of edges = 10 

Augment path: 0-4  

Augment path: 0-2-4  

Augment path: 0-1-3-4                                

Max flow = 3  

Nodal degree = 4                                       

- Maximum flow for 11-HR  

 

  Number of edges = 44         
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Figure 5.  An 11-HR. 

 

Augment path: 0-10  

Augment path: 0-1-10  

Augment path: 0-2-10  

Augment path: 0-3-10  

Augment path: 0-7-10  

Augment path: 0-8-10  

Augment path: 0-9-10  

Augment path: 0-4-6-10  

Maximum flow = 8                                 

Nodal degree = 8                                       
 

-Maximum flow for 29-HR  
 

Number of edges = 116 

Augment path: 0-1-28  

Augment path: 0-2-3-28  

Augment path: 0-4-26-28  

Augment path: 0-8-23-28  

Augment path: 0-28  

Augment path: 0-27-28  

Augment path: 0-25-28  

Augment path: 0-21-20-28 

 Maximum flow = 8  

 

-Maximum flow for 57-HR  
 

Number of edges = 342  

Augment path: 0-1-56  

Augment path: 0-56  

Augment path: 0-56  

Augment path: 0-4-52-56  

Augment path: 0-8-9-50-56  

Augment path: 0-16-31-56  

Augment path: 0-25-33-35-56  

Augment path: 0-32-40-48-56  

Augment path: 0-41-42-56  

Augment path: 0-49-56  

Augment path: 0-53-54-56  

Augment path: 0-55-56 

Maximum flow = 12  
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5.  CONCLUSIONS 

 
Although the Hyper-Cube is quite powerful from a computational point of view, there are some 

disadvantages to its use as an architecture for parallel computation. One of the most obvious 

disadvantages is that the node degree of the Hyper-Cube grows with its size. This means, for 

example, that processors designed for an N-node Hyper-Cube cannot later be used in a 2N-node 

Hyper-Cube. Moreover, the complexity of the communications portion of a node can become 

fairly large as N increases. For example, every node in a 1024-processor Hyper-Cube has 10 

neighbors, and every node in a one million-processor Hyper-Cube has 20 neighbors. 

 

In this paper we present hyper-rings (HRs for short).The number of links between processors in a 

HR is roughly twice that of a HC with the same number of processors, but the proposed 

organization possesses a number of advantages over that of a HC. Altman, et al., (1997) have 

shown that for any N we can construct a HR with N processors, whereas a Hyper-Cube must 

contain exactly 2n processors for some positive n.Although the number of edges in a hyper-ring is 

roughly twice that of a hypercube with the same number of nodes, the diameter and the 

connectivity of the hyper-ring are shorter and larger, respectively than those of the corresponding 

hypercube. These properties are advantageous to hyper-ring as desirable interconnection 

networks. 

 

In this paper we developed a software module to test the connectivity of various odd-sized HRs 

and attempted to answer an open question whether the node connectivity of an odd-sized HR is 

equal to its degree. We attempted to answer this question by explicitly testing the node 

connectivity's of various odd-sized HRs. We have used the Ford-Fulkerson method to find the 

maximum flow for the odd-sized HRs, which is related to the node-connectivity of the HRs. In 

this paper, so far we have confirmed our hypothesis for the first 1,000 odd-sized HRs. 
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