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ABSTRACT 
 

The aim of the present article is to optimize the robustness objective for the Resource-Constrained Project 

scheduling Problem (RCPSP) dealing with activity duration uncertainty. The studied robustness consists in 

minimizing the worst-case performance, referred to as the min-max robustness objective, among a set of 

initial scenarios. We propose an enhanced GRASP approach as a solution to the given scenario-based 

robust model. This approach is based on different priority rules in the construction phase and a forward-

backward heuristic in the improvement phase. We investigate two different benchmark data sets, the 

Patterson set and the PSPLIB J30 set. Experiments show that the proposed enhanced GRASP outperforms 

the basic procedure, and a based-evolutionary algorithm, in robustness optimization. 
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1. INTRODUCTION 
 

Deterministic Resource-Constrained Project Scheduling Problem (RCPSP) is a well-known 

project scheduling problem that consists in scheduling a set of activities over resources with 

limited capacities subject to precedence and resource constraints while optimizing several 

objectives.  The most common objective is to minimize the project duration (so called makespan 

and denoted by Cmax). The RCPSP is classified as an NP-hard problem [1], and tackled with 

various approaches in the literature.  
 

However, during execution, projects are subject to unexpected disruptions caused by different 

ways such that activities may take longer than their estimated durations, new activities may be 

inserted or retreated, resources may be broken down, which causes delays, and project spend 

more time than its initial expected duration. Thus, many researchers ‘reflects, on project 

scheduling, are concentrated in managing uncertainty during the scheduling process by 

establishing new scheduling approaches such that robust approaches. The goal of a robust 

approach is to generate one or more robust schedules with the guarantee of performance 

whenever disturbances occurred. Consequently, the schedule robustness is the capability to 

absorb unexpected system variability with the minimum cost.   
 

Although heuristic and metaheuristics are still suitable way to resolve complex problems, they are 

less investigated when dealing with uncertainty. From this point of view, we are encouraged to 

apply an enhanced GRASP approach to the RCPSP under uncertainty. Based on scenarios, the 

studied robust optimization problem aims to minimize the min-max robustness objective. The 

proposed approach is combined with a forward-backward improvement heuristic. 
  
The next section points out the most of works related on scheduling under uncertainty from the 

literature, especially for RCPSP. Section 3 focuses on the problem definition in deterministic and 

non deterministic version. Section 4 describes, in general, the main phases of the GRASP method. 
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In section 5, we present the application of the latter method to the robust RCPSP. Computational 

results are given in section 6. Section 7 concludes this article. 

 

2. LITERATURE REVIEW 
 

Deterministic RCPSP was widely studied in the literature. Heuristics and metaheuristics were 

successfully applied in this context, such as Genetic Algorithms, Sampling methods, based local 

search methods, Simulated Annealing, etc. Efficient surveys are given in the following references 

[2, 3]. As described, the RCPSP have been the research subject of an important amount of 

literature.  
 

However, during execution, projects are subject to disruption due to initial uncertain data, a lack 

of information, or unexpected dynamic events. Recently, authors have investigated efficient 

efforts on scheduling problems dealing with uncertainty. In [4], the authors have classified 

approaches dealing with uncertainty in two main axes: reactive approaches and proactive 

approaches. The first class concerns approaches which react on-line, during schedule execution; 

they are usually based on scheduling policies (scheduling strategy). Thus, a dynamic schedule 

may be modified during their execution; we distinguish the purely reactive procedures, also called 

dynamic approaches, and the predictive-reactive approaches which are based on an initial 

predictive schedule. Proactive approaches (called robust approaches) work off-line and do not 

change the schedule is permitted during execution. Thus, they consider in advance, before the 

beginning of the schedule the probable parameters changes that could occur on-line and generate 

schedules with the guarantee of a performance level. More details about approaches designed for 

project scheduling are presented by  Horroelen and Leus [5]. 
 

A robust optimization aims to find a solution having the best worst-case performance across a 

finite or infinite set of scenarios [6]. A scenario represents a problem realization founded by 

matching fixed values to uncertain problem parameters. The scenario-based approach, inspired 

from the decision analysis, is an efficient way to model uncertainty inspired from the decision 

analysis. A robust schedule is defined as the schedule which guarantees a good performance for 

all possible scenarios, and remains with highest performance for all scenarios. Schedule 

robustness is evaluated in terms of mean value, worst-case, worst-case deviation, etc [7]. Two 

well known robustness objectives are studied in the literature: the absolute robustness, and the 

absolute regret robustness, referred to as, the min-max robustness, and the min-max regret 

robustness, respectively. With the absolute robustness objective, the aim is to minimize the 

maximum performance degradation among all scenarios. However, the min-max regret 

robustness objective is to minimize the maximum deviation of solutions from optimality across 

all scenarios. In the literature [8], Kouvelis and Yu have investigated the cited robustness 

objectives for different combinatorial optimization problems.  
 

Although robust scheduling problems take into consideration uncertainty in different real-life 

cases, solution methods for robust RCPSP are not exhaustive.  In [9], Al Fawzen and Haouari 

have proposed a bi-objective model for RCPSP with the minimization of the makespan and the 

maximization of the robustness. The problem was solved by a tabu search heuristic. Chtourou and 

al. [10] have studied various robustness measures based on priority rules when activity durations 

vary. The work of Artigues and Leus [11] deals with RCPSP under activity uncertainty. Based on 

PLNE, the authors proposed a scenario-based bi-level problem formulation that minimizes the 

absolute and relative regret robustness. The authors have applied, in first, exact method which has 

taken excessive computational time considering medium sized instances. So they were directed 

towards heuristic procedures to get better results. In addition, the Genetic algorithm was simply 
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adapted to robust optimization problems, such as the one machine problem [12] and the robust 

RCPSP [13]. Heuristics and metaheuristics were also approved as efficient methods for stochastic 

RCPSP (SRCSP) where the uncertainty is modeled by probabilistic distributions, and the 

robustness is evaluated in terms of expected makespan. We cite the work of [14] in which 

metaheuristics were well investigated to SRCPSP, a solution in this work consists in finding an 

activity-based policy that minimizes the expected makespan. Recently, and based on stochastic 

methods, the work of [15] gives promising results for RCPSP under uncertainty, in particular, 

projects with 30 activities. 
 

3.PROBLEM STATEMENT 
 

3.1.Deterministic RCPSP 
 

A deterministic version of RCPSP consists in performing a set A of n activities on a set K of m 

resources. Every activity i has a fixed processing time denoted by pi and requires rik units of 

resource type k which is characterized by a limited capacity Rk that must not be exceeded during 

the execution, and activities must not be interrupted. Two additive dummy activities 0 and n + 1 

are used that represent to start and the end of the project, respectively. Dummy activities have 

null time duration and null resource requirement. The objective of the standard RCPSP is to 

construct a precedence and resources feasible schedule with the minimum makespan.  Precedence 

constraints perform that the start time of an activity i is permitted only when all its previous 

activities are finished. The Resource constraints satisfy that the use of every resource type, at 

every instant, does not exceed its capacity.  
 

 A schedule S referred to the baseline schedule which is given by the list of activity finish times 

(start times); let Fi (>=0) denotes the finish time of an activity i, then S=(F0, F1, …, Fn, Fn+1) and 

the total project duration corresponds to the end project finish time Fn+1.  

 

Therefore, the conceptual formulation of the RCPSP is given by the following formula:    
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with A(t) denotes the set of activities which are executing at time t, and Pj denotes the set of 

predecessors of the activity i. 

 

 An instance of the RCPSP can be represented by a graph G = (V, E) where the set of nodes V is 

defined by project activities and E contains arcs according to the precedence relations. 

 

3.2.Min-Max Robust Model 
 

The considered variability for RCPSP relies on activity durations. We use a scenarios-based 

approach to model the problem variability. Hence, we construct a set of scenarios, denotes by ∑, 

for optimization, let iσ be a single scenario that corresponds to a problem realization. Each 
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scenario is found by altering the initial activities durations with respect to a maximal activity 

delay.  
 

A feasible solution x for the robust scheduling problem is represented by an activity list; let f(x, iσ

) denotes the makespan of the generated schedule according to x on scenario iσ . This value 

defines the local performance of the solution x according to iσ . However, the global optimization 

process has to find the robust schedule with the global performance across the optimization set. 

Usually, the global performance is measured in terms of mean value, maximum deviation, etc. 

The object of the present work is to optimize the min-max robustness objective of RCPSP which 

consists in minimizing the maximum makespan value over all scenarios. The optimization 

objective is given by the following formula.  

 

                                                           )),((maxmin ixf
i

σ
σ Σ∈

 
   (4) 

Resource and precedence constraints for the robust RCPSP are the same in the deterministic case 

(Equations (2) and (3)).   

 

2.3. Complexity 
 

The robust scenario-based robust RCPSP with the min-max robustness objective is an NP-hard 

problem as it can be reduced to the standard NP-hard deterministic version for a number of 

scenarios equals to one [6]. 
 

4.GRASP METAHEURISTIC 
 

As a multi-start metaheuristic, the GRASP (Greedy Randomized Adaptive Search Procedures) 

was developed for combinatorial optimization [16, 17]. It consists of an iterative process, in each 

of one, two phases are performed: a construction phase and a local search phase. The first one 

permits the construction of a feasible solution iteratively, one element at once iteration. However, 

the second phase performs the improvement of the recently constructed solution by a simple local 

search heuristic. The best across all generated solutions is then retained.  
 

In the construction phase, a Candidate List (CL) is generated that contains the set of the candidate 

elements (edges) to be selected and added to the current partial solution. The CL is ordered with 

respect to a greedy function that measures the benefit of selecting each element. Moreover, the 

effective selection of one edge is done from an additive list: the Restricted Candidate List (RCL) 

that regroups the best elements from the CL with highest greedy values.  
 

The GRASP procedure combines crucial characteristics of search methods. In the one hand, it is 

adaptive because the greedy function values are updated continuously depending on the current 

partial solution and the considered schedule construction strategy. In the other hand, it is a 

randomized-based method such that a selection of one element in the RC L is done randomly.  

 

4. GRASP APPROACH FOR ROBUST RCPSP 
 

In order to overcome the problem complexity, we propose to investigate metaheuristics, in 

particular, to apply a GRASP approach to the RCPSP with the optimization of the absolute 

robustness so called the min-max robustness objective.  
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The main steps of the proposed approach are depicted in the following figure. As a multi-start 

heuristic, the algorithm starts with generating gradually a new solution. This step integrates an 

intensification strategy. Current solution is improved, in the second step, by a Local Search 

heuristic (LS), and a Forward-Backward Improvement (FBI) heuristic. 

 

 
 

Figure 1. General steps of the enhanced GRASP approach 

 

Throughout this iterative process a vector ES is generated which contains the best encountered 

solutions (elite set). The size of the ES is defined by a fixed parameter denoted by nbElite. Elite 

solutions are updated iteratively. 

 

4.1. Solution Representation and robust fitness 

 

A solution is represented by an activity list that satisfies precedence constraints. To evaluate the 

global solution performance, a robust evaluation is made. We apply decoding procedure to 

generate the schedule according to the activity list x and the scenario iσ . Then, the robust fitness 

which measures the global solution performance is determined by the maximum makespan over 

all obtained values for ∑. The Serial Schedule Generation Scheme (Serial SGS) is used as a 

decoding procedure [2] to construct the schedule. 

 

4.2. Construction Phase 
 

At one iteration of the construction phase one activity is selected from an eligible set an added to 

the current partial solution. We generate the list CL of candidate activities having all their 

predecessors scheduled. For each activity in the CL, the corresponding greedy function value is 

equals to the priority rule value. We propose the application of different priority rules: the 

minimum Latest Finish Time (MLFT), the minimum of the activity free slack (MFLK), the 

inverse free slack priority rule, and the critical activity based selection. The object is to study the 

effect of the priority rule on robustness objective.  

 

First activities of the CL are then copied in the RCL. The size of the latter list is denoted by 

TRCL. From the constructed RCL, an activity is then chosen randomly and added at the latest 

position in the partial activity list. A pool of elite solutions ES is constructed.  

Construct Greedy 

Solution 

 

Apply Local Search with 

FBI heuristic 

Update the elite set 

Stopping criteria 
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To ensure solutions with a high quality, we incorporate in the construction phase an 

intensification strategy based on the elite set. When the ES attempts the fixed parameterized size, 

then, with probability pES, we select randomly one element to be considered at the current 

iteration of the construction phase. Then, the first activity, in the elite solution, that does not 

appear in the partial current solution is selected and inserted in. The above described process is 

repeated until the construction of the totality of the solution is reached. Figure 2 gives the pseudo 

code of the proposed greedy construction procedure, we suppose that ES contains at least one 

element. 

 

procedure ConstructGreedyRandomizedSolution(S) 

      S = {}; 

       for Solution construction not done do    

  p=random(); 

                 if (p<pES) 

                        S’ = SelectElementAtRandom (ES) 

                        e = select First Element in S’ and doesn’t appear in S 

                 else         

                        MakeRCL(CL, TRCL, RCL); 

          e = SelectElementAtRandom(RCL);           

                 end  

                  S = S ∪{e}; 

          end 

end ConstructGreedyRandomizedSolution. 

 
Figure 2. Pseudo code for the proposed GRASP construction phase 

 

4.3. Improvement Phase 
 

The proposed GRASP improvement phase combines a Local Search procedure (LS) with a FBI 

heuristic. The proposed Local Search starts from the recently constructed and improved solution 

x. Iteratively, a local move is applied to x to generate a neighbourhood set: N(x). The proposed 

move consists of the permutation of one activity of x with others nodes. The activity to be 

permuted is chosen at random. Obtained feasible solutions are saved to be compared with x. The 

best element over all neighbours and the current solution is retained. After a maximum number of 

iterations, the search method would stop with the best solution over all neighbourhoods.  

 

The Forward-Backward Improvement (FBI) method is a two-passes method which was used by 

Li and Willis (1962) for project scheduling. Starting with a schedule generated by a serial SGS, 

we apply, alternatively, forward and backward recursion using the Serial SGS. Resulting schedule 

in one pass is updated and used as a priority list in the next pass [2, 18].  

 

5.  COMPUTATIONAL EXPERIMENTS 
 

5.1. Data Sets and Robust Parameters Setting 
 

The proposed enhanced GRASP approach was implemented in Java and ran on a portable 

personnel computer equipped with an Intel® Core™ i5-2450M CPU@ 2.50 GHz 773MHz, 

2.70Go of RAM. Experiments were performed on two benchmark project instances: the Patterson 

data set [19], and the PSPLIB J30 data set [20]. The first data set contains 110 instances of 

various projects with 3 resource types and a number of activities that vary between 6 and 51. The 
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second data set contains 480 project instances which are generated by the ProGen generator. These 

instances represent different projects with only 30 activities and 4 resource types. 

 

Scenarios are generated with limited size for both the optimization and the evaluation 

(simulation) set. The optimization set contains nbScen scenarios, equals to 10, used to compute 

the robustness objective. The evaluation set is used for simulation to estimate the expected 

makespan. The size of the evaluation set is denoted by l. A scenario is an initial problem 

realization where a set of activities are modified by altering their initial durations. In fact, for 10 

percent of the total project activities, we add a time increment δ which is taken from a uniform 

distribution U(1,  maxDelay). The latter parameter indicates the maximum activity delay which is 

fixed to 10. 
 

5.2. Performance measures 
 

To evaluate the performance of the proposed GRASP robust approach, we were interested by the 

following performance measures: 

- The estimate Expected makespan which is calculated over the evaluation set �E�C���	 =
�
� ∑ ����, σ�		�

��� �; 

- The Standard deviation of the makespan over the evaluation set; 

- The Relative Optimality gap that measures the deviation between the estimate expected 

makespan and the lower bound LB, or the optimal makespan if exists, for the 

corresponding deterministic project �������	���
�� �.  

All results are averaged by the number of tested project instances. 
 

5.3. Evaluation in Deterministic Case 
 

We started experiments by testing the GRASP approach in the deterministic case. Hence, Table 1 

shows results on the J30 data set. We performed the basic GRASP approach which is based on a 

Local Search (LS) in the improvement phase (column 2). Then, the basic algorithm is improved 

with the FBI and tested for the same instances set. We vary the maximum number of iterations for 

both GRASP process (Line 2), and the LS (Line 3). Line 4 reported the average deviation from 

the well-known optimal solutions in percent, for both two GRASP implementations. The number 

of the obtained optimums is given in Line 5. 

 
Table 1.  Average deviations from optimal solutions J30 data set instances (the deterministic case). 

 

 GRASP-LS GRASP-LS+BFI 
Iterations for GRASP  100 100 300 3000 1000 
Iterations for LS 100/2 10 10 10 1000/4 
Optimality deviation  0.51 0.57 0.34 0.24 0.20 
Optimums 396 390 419 428 434 
 

Results for the static RCPSP show the performance of the applied GRASP procedure compared 

with other methods in the literature [3], especially when combined with the forward-backward 

improvement heuristic. 
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5.4. Evaluation of the Proposed Robust Approach 
 

Under uncertainty, we have performed different runs of the proposed GRASP on Patterson data 

set. The basic algorithm denoted as (GRASP-LS(10)) is considered as the implementation of the 

GRASP approach with the LFT priority rule in the construction phase and 10 iterations of local 

search procedure. We vary the maximum number of iterations with the local search incorporated 

in GRASP.  
 

Table 2.  Robustness evaluation on Patterson data set (1000 simulations). 

 

 GRASP-LS(10) GRASP-LS(20) GRASP-LS(100) 

Avg. Optimality 

gap 
0.2366 0.2384 0.2249 

Avg. Standard 

deviation 
3.4423 3.4026 3.4121 

 

Results are reported in Table 2 with 1000 simulations as the size of the evaluation set. The 

simulation procedure was run for each project instance. We observe that the local search 

procedure has an impact on the global performance. In fact, an increment of the number of 

iterations yields to better results for robustness. However, this parameter must be controlled to 

ensure the non degradation of the later objective, which is the case with 100 iterations in the local 

search procedure.  

 

To evaluate the influence of the FBI heuristic on the global GRASP performance, Table 3 

contains numerical results on J30 data set under uncertainty, simulated over 100 replications. We 

point out that the enhanced GRASP (Column 2) outperforms the basic version with a minimum 

value of the average standard deviation.   

 

In parallel, we try to examine the performance of proposed approach compared with an 

evolutionary-based robust solution from the literature. Hence, we consider the robust genetic 

algorithm proposed in [13] for RCPSP under uncertainty. Colum 3, in table 3, reports results of 

that evolutionary approach applied, with the same robustness objective, to the same data set. For 

this tested algorithm, the stopping criterion is to attempt 1000 generated schedules. The GRAS 

approach improved with the FBI heuristic gives better results than the evolutionary algorithm 

with the same maximum number of generated schedules.   

 
Table 3.  Robustness evaluation on J30 data set (100 simulations). 

 

 GRASP-LS(10) 

(500 iter) 

GRASP-LS(20)  

+ BFI (250 iter) 

Evolutionary 

Algorithm 
Optimality gap avg. 0.1349 0.1243 13.46 

max. 0.2755 0.2603 27.05 

Standard deviation avg. 4.2515 4.1428 4.2386 
max. 6.3863 5.8086 5.5664 

 

We performed different runs of based GRASP approaches, and evaluated the computational time 

on Patterson instances set for 1000 generated schedules. The corresponding results are shown in 

Table 4. As described in [18], the FBI heuristics needs two passes of the SGS procedure to doubly 

justified the initial schedule. Thus, the number of generated schedules with the basic GRASP 

algorithm and the enhanced version with a FBI heuristic is equals to�nbIterMax × 10	 , 
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and�nbIterMax × �10 + 3		, respectively. Column 2 and 3, in this table, show that, for maximum 

1000 generated schedules, the enhanced GRASP outperforms the basic GRASP in terms of 

robustness and computational time.  

 
Table 4. Comparison between GRASP and GRASP-FBI on Patterson data set (1000 simulations). 

 

 GRASP-

LS(10) 

GRASP-LS(10) + 

BFI 

GRASP-LS(10) + 

BFI 
Nunber of iterations 100 75 333 

Optimality gap avg. 0.2362 0.2304 0.2259 

max. 1.3352 1.31197 1.3398 
Standard 

deviation 

avg. 3.4106 3.4008 3.4089 

max. 5.5832 5.6207 5.5526 
Time(s) 2.04 1.775 7.926 

 

5.5. Priority Rule on Schedule Construction  
 

The idea of the present experiment is to study the effect of priority rules on robustness solution 

quality.  As described in section 4, the construction phase implements a priority rule to order the 

Candidate List content, from which we select the TRCL best elements to the RCL. 

  

We investigate in table 5 different priority rules based on critical path: Minimum Latest Finish 

Time (MLFT), the minimum Slack (MSLK), the inverse MSLK, the critical Activity based rule. 

The total activity slack is obtained by the difference between its latest and earliest start time. We 

also propose to study a priority rule which based on graph structure which is the GPRW (Greatest 

Rank Positional Weight). We ran the GRASP algorithm with two different RCL size values 

(TRCL).  

 

Table 5.  The Standard deviation variation on Patterson data set (1000 simulations). 

 

 
Priority rule 

GRASP-LS(10) 
TRCL=5 TRCL=3 

MLFT  3.4721 3.4456 
MSLK  3.4702 3.4871 
inverse MSLK 3.4640 3.4454 
Critical Activity 3.4533 3.4741 
GPRW 3.4606 3.4499 

 

With limited size of the restricted list, the standard deviation of the estimated makespan is 

decreased as we reinforce best elements in the RCL. The inverse MSLK gives better results than 

the MSLK; this result can be interpreted as the inverse SLK favour activities having greatest slack 

values, consequently generated schedule will be more flexible to absorb activity delays.  

 

6. CONCLUSIONS 
 

In this article, we have studied the RCPSP with activity duration uncertainty. Based on scenarios, 

the object of the tackled problem is to optimize the min-max robustness objective. We have 

proposed an enhanced GRASP method which incorporates priority rules in the greedy 

construction phase and a local search with a forward-backward heuristic in the improvement 
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phase. Our robust approach was successfully tested in both deterministic and robust cases; the 

combination of the GRASP with the FBI has improved the robustness objective. Moreover 

experiments have shown the simplicity and the efficiency of our robust approach compared with 

other complex metaheuristic such as evolutionary-based approach. Further works should be 

focused on the investigation of more metaheuristics approaches in robust project scheduling, and 

therefore exploit more large-sized project instances. 
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