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ABSTRACT 

 
Markovian timed automata (MTA) has been proposed as an expressive formalism for specification of real-

time properties in Markovian stochastic processes. In this paper, we define bisimulation relation for 

deterministic MTA. This definition provides a basis for developing effective algorithms for deciding 

bisimulation relation for such automata. 
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1. INTRODUCTION 
 

Timed automata have shown to be very useful formalism for modeling and analyzing of real-time 

systems [4]. Timed transition systems (usually with infinite state space) are used for defining the 

semantics of timed automata. While in timed automata for any state, there are some (deterministic 

or nondeterministic) transitions to other states according to some constraints, using the concept of 

probability leads to probabilistic timed automata [1]. In this extension of timed automata, 

probability distributions are associated with each transition. Markovian timed automata (MTA) 

[7,11] is an extension of probabilistic timed automata (PTA) in which each location has an 

exponentially distributed residence time. UPPAAL [8] and PRISM[9] are two well-known tools 

that implement verification algorithms for probabilistic timed automata. 

 

State-space explosion is known as one of the major challenges in the verification of many models. 

One solution to combat this challenge is to apply the concept of bisimulation [5]. Informally, a 

bisimulation for an automaton is an equivalence relation over its states, such that states in 

the same equivalence class are essentially indistinguishable over the evolution of the 

system. PRISM supports both week and strong bisimulation for probabilistic systems. In addition 

to state-space reduction, bisimulation relations can also be used for other purposes such as 

stepwise system development (see [3] for example). According to the type of transition system, 

there are various definitions for bisimulation relations. For example, in [6] this relation was 

studied for probabilistic systems. That definition has been proposed for a system with finite state 

space while for many real-time models and semantics of timed automata, the state space is 

infinite. In general, the problem of computing bisimular states of infinite transition systems is not 
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decidable and to cope with this problem, many modified versions of bisimulation relations have 

been proposed. For example, in [2] timed bisimulation and probabilistic timed bisimulation have 

been studied. In [3] the concept of week bisimulation for PTA has been introduced and a 

definition for sets of states, called classes, has been utilized in order to overcome the problem of 

infinite states. This method can be considered as a very promising one for deciding bisimulation 

relation for Markovian timed automata. 

 

In this paper we specify the notion of zones and cylinder sets for MTA and accordingly, extend 

the definition of bisimulation relation to such type of formalism. The proposed definitions and 

concepts provide the required basics for developing deciding algorithms for MTA.  

 

2. PRELIMINARIES 
 

In this section we review some basic concepts and definitions which will be used in the 

subsequent discussions. 

 

Distributions. A (discrete probability) distribution over a countable set S is defined as a function 

]1 , 0[: →Sµ . The set of all distributions over set S is denoted by )(SDistr . For a given distribution 

]1 , 0[: →Sµ  and a set SQ ∈' , we define ∑ ∈
=

'
)()'(

Qq
qQ µµ . For a set H we define 

]1 , 0[)(:Pr →HF  as a probability measure on the measurable space ))H(,H( F  where )(F H  is a 

algebra−σ  over H. 

 
Definition 1. Markov Decision Process: A Markov decision process (MDP) [12] is a tuple  

),,,( 0 PsSActD = where  Act is a finite set of actions; S  is a set of states; Ss ∈0  is the initial 

state; and ]1,0[)(: →×× SFActSP  is  a transition probability function, where )(.,., AP  is 

measurable  for any )(SFA ∈ .  In fact, ),,( AsP α  shows the probability of   one step transition 

from state Ss ∈ to the set of destination states )(SFA∈  using action Act∈α . 

 
Equivalences and Partitions. If  R  is an  equivalence relation on a set S then S/R  shows  the set 

of equivalence  classes and for every Ss ∈ we use the notion of [s]R for the equivalence class  of 

s  with respect to  R. A partition of a set S is a set P consisting of pair wise disjoint nonempty 

subsets of  S such that SB =∪ ∈ pB .  A partition P is finer than a partition 'P  (and 'P  is coarser 

than P ) if and only if each PB ∈ is contained in some 'P'B ∈ .   

  

Time and Clocks. Let },...,
1

{ nxxX =  be a set of nonnegative real variables mentioned as 

clocks. The values of all clocks increase at the same rate as real-time. 

 

A valuation over X  (clock valuation) is a mapping 0: ≥→ RXη assigning real values to 

clocks. We use )(XV  for all possible clock valuations over X . For a valuation η  and a time 

value 0t ≥∈ R  let t+η  denote the valuation such that t)(t)(x)( +=+ xηη , for each clock 

X∈x . For a subset of clocks X⊆X  the reset of X , denoted by 0]:X[ =η , is the valuation 'η  

such that 0)(':Xx =∈∀ xη  and )()(':Xx xx ηη =∉∀ . Through this paper we use X   for 

subsets of X . 
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A clock constraint φ  over X  is defined as follows: 

 

21|~||:: φφφ ∧= cxfalsetrue  

 

where } , , ,{ ~ >≥≤<∈ , x is a clock variable and Nc ∈ . We call 
φ

 a clock-zone if it has some 

relations of the form 
cyx ~−

 where 
X∈yx,

. Notice that in this paper we use the word zone 

for a class of states with common location, i.e. a zone is a pair 
),( φl

 where Locl ∈  and 
φ

 is a 

clock-zone.  

 

Definition 2. (Syntax of MTA) A Markovian timed automata (MTA) is a tuple 

),,,,,( 0 →= ElLocXActM  where 

- Act is a finite set of actions; 

- X is a finite set of clocks; 

- Loc is a finite set of locations; 

- Locl ∈0  is the initial location; 

- 0: >→ RLocE  is the exit rate function; 

- )2()( LocDistrXBActLoc
X ××××→⊆ . 

 

For simplicity, we abbreviate ∈→),,,( ζα grdl  by ζα  → grd
l

,
  where l  is the source 

location, α  is an action, grd is a clock constraint called a guard, and ζ  is a probability 

distribution over LocX ×2 where X is the set of locations to be reset and Loc denotes destination 

location.  Notice that this definition doesn't include location invariants.  
 

Although in probabilistic timed automata we can have nondeterministic transitions [1] but in this 

paper we assume that the transitions are deterministic. In other words, for each location Locl ∈  

and action Act∈α  there exists at most one probability distribution and moreover, clock 

constraints does not contain neither  ∨  nor ¬  operator. 
 

Let Actl,ηI ∈)(   be the set of actions enabled in location Locl ∈  under clock valuation )(XV∈η . 

Although in the definition of MTA in [7]  probabilistic distributions may not be total but in this 

paper we suppose they are total. It means that for each ζ in each ζ
α

 →
grd

l
,

, we have 

1),(
,

=∑ ∈⊂ LOClXY
lYζ . 

 

Definition 3. For each Locl ∈  and  Act∈α ,  ),( αlguard  is a clock constraint that is defined for 

the transition with l  as source state and α  as action. We define pll =)
2

,
1

,
1

(P α  if 

plX
grd

lXXlguardgrd = →⊂∈∃ )
2

,(,
,

:),,( ζζ
α

α . Like [7] we define the semantics of an MTA 

as a continues-state Markov decision process, where states are (like Timed automata) of  the  

form  ),( ηl  where  Locl ∈  and  η  is a clock valuation over X . In fact, the execution of an MTA 

can be traced by a sequence of states (paths).  One can use the concept of paths to calculate the 

probability of reaching some states.  
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Definition 4. (Path) A finite path in MTA M is of the form n

tt
lll ...1100 ,

1

,

0  → → αα
 where for 

each transition i

grd

i
iil ζα

 →
,

 of M with 0),( >iii Xlζ , clock constraint iη should be valid on 

entering location il  that by definition 0
0

=η  and iii g |t =+η  and ]0)[(1 =+=+ iiii Xtηη . We 

denote with 
M

Paths the set of finite paths in M . For 
M

Paths∈ρ we use nln =][ρ  for the n-th 

location of ρ . 

 

Definition 5 (Semantics of MTA): let ),,,,,( 0 →= ElLocXActM  be an MTA. The (continuous 

state) MDP  associated with  M  is ),,,()( 0 PsSActMD =  where )}(,|),{( XVLllS ∈∈= ηη  , 

( )0,00 lS =   and  for  each  edge  ζ
α

 →
grd

l
,

 in M  with 0)
'

,( >= plXζ    and any grd=|η , we 

have :  

 

ττη
τ

αζ dp
gR

lE
elEAlP ).(1.

0

)(
)(),),,(( +

≥

−
= ∫                                                                 (1) 

 

where }| and ]0)[(' .0 |)','{( grdXRlA =+=+=≥∈∃= τητηητη  and 1g(.) is a boolean  function  where  



 =+

=+
otherwise      0

,|  if    1
)(1

g

g

ητ
ητ  . 

 

Note that the set A  in Definition 5 is indeed a zone [8].  More precisely, for a state ),( ηl , time 

duration  t, and  set of clocks  X⊆X  a zone is defined as  

 

}  xif  0  ,    xif  0|){(),),Zone(( Xtη(x)(x)
'
ηX(x)

'
η

'
l,ηXtl,η ∉≤−≤∈== which includes all states with 

location  l  and  clock valuations that either set a clock variable x to 0 or add duration t to x. In 

fact, for a transition  ζα  → grd
l

,
 if the clock valuation is η  (when transition occurs) and  

0)
'

,( >= plXζ , then for each clock variable Xx ∈  we  should have 0)( =′ xη  and for other clock 

variables Xx ∉′ , txx ′+′=′′ )()( ηη  where tt ≤′≤0 . We can also suppose that grdt =′ |)(η  for 

those t′ .   As a consequence, we have the following result:  

 

For a transition ζ
α

 →
grd

l
,

 in M  with 0)
'

,( >= plXζ  and grd=|η  we have 

 

∫
=

=
+

−
=

t

0
dτ .p τ)(η

g
1 . 

)τE(
)eE(X))t,η),,'Zone((α,η),,P((   τ

τ

l
lll                                                       (2) 

 

where t is the maximum  value  that  grdt =+ |η . We use MDP(M) for associated MDP of a given 

MTA M .  

 

Definition 6  (Zone equivalency). Let R be an equivalence relation on the set of states of   

MDP(M).  Suppose s1 and s2 are two states of MDP(M) such that s1 R s2. For each set of clock 

variables XYX ⊂, and each 0≥∈ Rt  we have ),,(),,( 21 YtsZoneRXtsZone if and only if for each 
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state )Xt,,
1

Zone(s
1
' ∈s  there exists a state )Yt,,

2
Zone(s

2
s' ∈  that ′′

2
s R

1
s . Moreover, we can 

develop definition of partitions on zones. Like [s]R that shows the block of states equivalent to s 

we define: 
 

)},t,
1

 Zone(sR )Xt,,
1

Zone(s|),t,
1

Zone(s{
R

)]Xt,,
1

[Zone(s xx ′′ ′′=
′′                                          (3) 

 
In fact this definition shows the class of equivalent states related to some zones. Moreover, for an 

MTA M we show the set of all (accessible) zones by Zones(M). A zone is accessible if all of its 

states are accessible. On the other hand, the number of all accessible zones is in general infinite. 

In many cases, definition of bisimulation and simulation relations for Probabilistic Transition 

Systems are based on the probability of performing transition  from a state to a class of states 

(related to equivalence relation) [3, 4, 7, 10]. We can generalize the above equation for classes of 

zones: 

 

Definition 7. Let 
R

Zones(M)/C ∈  be an equivalence class under relation R. Suppose that all 

CZ∈  are pair wise disjoint. For any )  η,  (ls =  we define  ∑
∈

=

Cz

),,)P((l, C)α,η),P((l, zαη . In 

other words, probability of reaching from s to a class of zones C is equal to sum of probability of 
reaching from s to any members of C. The definition of semantic of MTA (like other probabilistic 

automata) is based on the probability of transition from one state to a class of states. But because 

transitions in MTA are continuous time, the probability of reaching to a destination state from 
some source states is defined based on cylinder sets. In the following we review the concept of 

cylinder set [8674].  

 
Definition 8. (Cylinder set) Given an MTA M, we show a cylinder set by 

),,,...,,,( 11000 nnn lIIlC −−αα  where 
1

0 ),...,( +∈ n

n Locll  and 0≥⊆ RI i . The cylinder set denotes a 

set of infinite paths ρ in M such that ili =][ρ  and iIi >∈<ρ . Let )(Pr 0 C
M

η denote the probability 

of C (probability of paths that belong to C) such that the initial clock valuation in location 0l  is 

0η . Formally )(P:)(Pr 000 ηη
MM

C = , where )(P i

M

i η  is defined as follows: 

 

 
0     )1(.).(1.).(

                                                             1
)(P

1

)(







<≤++

=
=

+
−

∫ niifdPpelE

niif

i

M

iiig

lE

i
i

M

i

i

i τητη
η τ where ]0X)[(1 =+=+ iii τηη . In fact 

)(P i

M

i η  shows the probability of set of transitions, according to C that starts from il  with clock 

valuation iη  to nl .  

 

With Cylinder set, we can extend definition (1) and replace a Cylinder set instead of the set A:  

)'(Pr),,,( 0 CCIsP MM

ηα =  where ),( 0ηls = and ),,,(' CIlC α= . 

 

3. Bisimulation Relation for MTA 
 
In many types of probabilistic automata a bisimulation is an equivalence relation R such that 

21s Rs  if the probability of reaching any equivalence class for both s1 and s2 is equal. But it is not 
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the case for MTA (also not for PTA) because the number of classes is infinite and the probability 

of reaching a class of equivalence states is zero. (Remember the relation (1) in definition 3) To 

solve this problem we use the concept zones (or set of classes like [3]).  

 

Because the definition of bisimulation is based on semantic of an automaton, we define it for 

MTA as follows: 

 

Definition 8. (Bisimulation) Two states )
1

,
1

(
1

ηls =  and )
2

,
2

(
2

ηls =  are bisimular if  

1- For each 
R

Zones(M)/C ∈  and each Act∈α : C)α,,
2

P(s C)α,,
1

P(s = , 

2- For each d >= 0 the above condition holds for s1 + d and s2 + d i.e after any time step (and 

before a location transition) either any of two states reach bisimular states or a deadlock 
occurs for both.  

         If we have some locations as final locations we should add third condition to above: 

3- Either 
f

Ll ∈
1

 and 
f

Ll ∈
2

 or 
f

Ll ∉
1

 and 
f

Ll ∉
2

. 

 

We write 
21

s
R

s ≈ (or simply
21

ss ≈ ) if  
1

s  and 
2

s  are bisimular. Two locations 
1
l and 

2
l  are 

bisimular (we denote 
21

ll ≈ ) if two states )0,(
11
ls =  and )0,(

22
ls =  are bisimular. As a result we 

can define a partition on the set of locations of a MTA. In this case a partition for LOC is a set 

},...,{
1 k

BB=Π   such that  φ≠
i

B (for ki ≤<0 ), )  ,0 ( jiandkjifor
j

B
i

B ≠≤<=∩ φ  , 

iki BLoc ≤<∪= 0  and for each  l and 'l  such that ' ll ≈  iff there exists a block Π∈
i

B  that 

i
Bll ∈∈ ' and B 

i . 

 

We can also extend the definition of bisimulation to cylinder sets and show that if 
21

ss ≈ then the 

probability of reaching any final location under particular sets of bisimilar cylinder sets will be 

equal.  For  two sequences as the form  nnnn
lIlIlIl ,,,,...,,,,,,

111111000 −−−
= ααασ and 

nnnn
lIlIlIl ',',',',...,',',',',',''

111111000 −−−
= ααασ   (where n > 0) two cylinder sets )(σC And )'(' σC  

are bisimular if for each ni ≤≤0 : ii 'αα =  and  
i

I
i

I '=  and 
i

l
i

l '≈ (that means 
i

l and 
i

l '  belong to 

the same block.) . This means that for each path in )(σC  there is a path in )'(' σC  that their 

actions and time intervals are stepwise the same and their locations are stepwise bisimular. 

 

A set of all bisimular cylinder sets defines a block cylinder set. Formally a block cylinder set 

denoted by ),,,...,,,(_ 11000 nnn BIIBCBlock −−αα  is defined as 

),,,...,,,( 11000
0,

nnn
niBl

lIIlC
ii

−−
≤≤∈

∪ αα where each 
iB is a Block of bisimulation relation. 

Notice that we can define the probability of a block cylinder set as the sum of probability of its 

cylinder sets: )),,,...,,,(_(Pr 110000 nnn

M BIIBCBlock −−ααη
 = ∑

∈
−−

ii Bl

nnn

M lIIlC )),,,...,,,((Pr 110000 ααη
. So 

we can redefine bisimulation relation for states as the probabilities of block cylinder sets: 
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Theorem 1: two states )
1

,
1

(
1

ηls =  and )
2

,
2

(
2

ηls =  are bisimular if for any block cylinder set 

Block_C and any Act∈α  and interval 
0≥⊆ RI  we have )_,,,( 1 CBlockIsP

M α  = 

)_,,,( 2 CBlockIsPM α  

 

Proof: By induction on the length of Block_C. 

 

Notice that according to Definition 8 one condition for bisimularity of two states )
1

,
1

(
1

ηls =  and 

)
2

,
2

(
2

ηls =  is that )
2

()
1

( lElE = . We use this condition in the first step of decision algorithm for 

bisimulation. 

 

4. CONCLUSION AND FUTURE WORKS 
 

 In this paper we have defined the bisimulation relation for markovian timed automata and have 

shown that by this definition we can reduce the state space of a MTA. Also we review some 

definitions that are necessary for decision algorithm for bisimulation of MTA. 

 
We have many future works to be done. First of all we want to propose an algorithm for deciding 

bisimulation relation for MTA. Also we can show some other applications of bisimulation for 

MTA. In addition to this one can define a logical characterization of timed-abstract bisimulation 

and study bisimulation from logical point of view. 
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