
International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.4, July 2016

DOI : 10.5121/ijsea.2016.7403 23

TIME-ABSTRACTING BISIMULATION FOR

MARKOVIAN TIMED AUTOMATA

MohammadSadegh Mohagheghi
1
 and Hojjat Sharifi

2

1
Department of Computer Science, Vali-e-asr University of Rafsanjan, Rafsanjan, Iran

2
Department of Computer Engineering, Vali-e-asr University of Rafsanjan, Rafsanjan,

Iran

ABSTRACT

Markovian timed automata (MTA) has been proposed as an expressive formalism for specification of real-

time properties in Markovian stochastic processes. In this paper, we define bisimulation relation for

deterministic MTA. This definition provides a basis for developing effective algorithms for deciding

bisimulation relation for such automata.

KEYWORDS

Formal methods, real-time systems, stochastic systems, bisimulation relation

1. INTRODUCTION

Timed automata have shown to be very useful formalism for modeling and analyzing of real-time

systems [4]. Timed transition systems (usually with infinite state space) are used for defining the

semantics of timed automata. While in timed automata for any state, there are some (deterministic

or nondeterministic) transitions to other states according to some constraints, using the concept of

probability leads to probabilistic timed automata [1]. In this extension of timed automata,

probability distributions are associated with each transition. Markovian timed automata (MTA)

[7,11] is an extension of probabilistic timed automata (PTA) in which each location has an

exponentially distributed residence time. UPPAAL [8] and PRISM[9] are two well-known tools

that implement verification algorithms for probabilistic timed automata.

State-space explosion is known as one of the major challenges in the verification of many models.

One solution to combat this challenge is to apply the concept of bisimulation [5]. Informally, a

bisimulation for an automaton is an equivalence relation over its states, such that states in

the same equivalence class are essentially indistinguishable over the evolution of the

system. PRISM supports both week and strong bisimulation for probabilistic systems. In addition

to state-space reduction, bisimulation relations can also be used for other purposes such as

stepwise system development (see [3] for example). According to the type of transition system,

there are various definitions for bisimulation relations. For example, in [6] this relation was

studied for probabilistic systems. That definition has been proposed for a system with finite state

space while for many real-time models and semantics of timed automata, the state space is

infinite. In general, the problem of computing bisimular states of infinite transition systems is not

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.4, July 2016

24

decidable and to cope with this problem, many modified versions of bisimulation relations have

been proposed. For example, in [2] timed bisimulation and probabilistic timed bisimulation have

been studied. In [3] the concept of week bisimulation for PTA has been introduced and a

definition for sets of states, called classes, has been utilized in order to overcome the problem of

infinite states. This method can be considered as a very promising one for deciding bisimulation

relation for Markovian timed automata.

In this paper we specify the notion of zones and cylinder sets for MTA and accordingly, extend

the definition of bisimulation relation to such type of formalism. The proposed definitions and

concepts provide the required basics for developing deciding algorithms for MTA.

2. PRELIMINARIES

In this section we review some basic concepts and definitions which will be used in the

subsequent discussions.

Distributions. A (discrete probability) distribution over a countable set S is defined as a function

]1 , 0[: →Sµ . The set of all distributions over set S is denoted by)(SDistr . For a given distribution

]1 , 0[: →Sµ and a set SQ ∈' , we define ∑ ∈
=

'
)()'(

Qq
qQ µµ . For a set H we define

]1 , 0[)(:Pr →HF as a probability measure on the measurable space))H(,H(F where)(F H is a

algebra−σ over H.

Definition 1. Markov Decision Process: A Markov decision process (MDP) [12] is a tuple

),,,(0 PsSActD = where Act is a finite set of actions; S is a set of states; Ss ∈0 is the initial

state; and]1,0[)(: →×× SFActSP is a transition probability function, where)(.,., AP is

measurable for any)(SFA ∈ . In fact,),,(AsP α shows the probability of one step transition

from state Ss ∈ to the set of destination states)(SFA∈ using action Act∈α .

Equivalences and Partitions. If R is an equivalence relation on a set S then S/R shows the set

of equivalence classes and for every Ss ∈ we use the notion of [s]R for the equivalence class of

s with respect to R. A partition of a set S is a set P consisting of pair wise disjoint nonempty

subsets of S such that SB =∪ ∈ pB . A partition P is finer than a partition 'P (and 'P is coarser

than P) if and only if each PB ∈ is contained in some 'P'B ∈ .

Time and Clocks. Let },...,
1

{ nxxX = be a set of nonnegative real variables mentioned as

clocks. The values of all clocks increase at the same rate as real-time.

A valuation over X (clock valuation) is a mapping 0: ≥→ RXη assigning real values to

clocks. We use)(XV for all possible clock valuations over X . For a valuation η and a time

value 0t ≥∈ R let t+η denote the valuation such that t)(t)(x)(+=+ xηη , for each clock

X∈x . For a subset of clocks X⊆X the reset of X , denoted by 0]:X[=η , is the valuation 'η

such that 0)(':Xx =∈∀ xη and)()(':Xx xx ηη =∉∀ . Through this paper we use X for

subsets of X .

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.4, July 2016

25

A clock constraint φ over X is defined as follows:

21|~||:: φφφ ∧= cxfalsetrue

where } , , ,{ ~ >≥≤<∈ , x is a clock variable and Nc ∈ . We call
φ

 a clock-zone if it has some

relations of the form
cyx ~−

 where
X∈yx,

. Notice that in this paper we use the word zone

for a class of states with common location, i.e. a zone is a pair
),(φl

 where Locl ∈ and
φ

 is a

clock-zone.

Definition 2. (Syntax of MTA) A Markovian timed automata (MTA) is a tuple

),,,,,(0 →= ElLocXActM where

- Act is a finite set of actions;

- X is a finite set of clocks;

- Loc is a finite set of locations;

- Locl ∈0 is the initial location;

- 0: >→ RLocE is the exit rate function;

-)2()(LocDistrXBActLoc
X ××××→⊆ .

For simplicity, we abbreviate ∈→),,,(ζα grdl by ζα → grd
l

,
 where l is the source

location, α is an action, grd is a clock constraint called a guard, and ζ is a probability

distribution over LocX ×2 where X is the set of locations to be reset and Loc denotes destination

location. Notice that this definition doesn't include location invariants.

Although in probabilistic timed automata we can have nondeterministic transitions [1] but in this

paper we assume that the transitions are deterministic. In other words, for each location Locl ∈

and action Act∈α there exists at most one probability distribution and moreover, clock

constraints does not contain neither ∨ nor ¬ operator.

Let Actl,ηI ∈)(be the set of actions enabled in location Locl ∈ under clock valuation)(XV∈η .

Although in the definition of MTA in [7] probabilistic distributions may not be total but in this

paper we suppose they are total. It means that for each ζ in each ζ
α

 →
grd

l
,

, we have

1),(
,

=∑ ∈⊂ LOClXY
lYζ .

Definition 3. For each Locl ∈ and Act∈α ,),(αlguard is a clock constraint that is defined for

the transition with l as source state and α as action. We define pll =)
2

,
1

,
1

(P α if

plX
grd

lXXlguardgrd = →⊂∈∃)
2

,(,
,

:),,(ζζ
α

α . Like [7] we define the semantics of an MTA

as a continues-state Markov decision process, where states are (like Timed automata) of the

form),(ηl where Locl ∈ and η is a clock valuation over X . In fact, the execution of an MTA

can be traced by a sequence of states (paths). One can use the concept of paths to calculate the

probability of reaching some states.

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.4, July 2016

26

Definition 4. (Path) A finite path in MTA M is of the form n

tt
lll ...1100 ,

1

,

0 → → αα
 where for

each transition i

grd

i
iil ζα

 →
,

 of M with 0),(>iii Xlζ , clock constraint iη should be valid on

entering location il that by definition 0
0

=η and iii g |t =+η and]0)[(1 =+=+ iiii Xtηη . We

denote with
M

Paths the set of finite paths in M . For
M

Paths∈ρ we use nln =][ρ for the n-th

location of ρ .

Definition 5 (Semantics of MTA): let),,,,,(0 →= ElLocXActM be an MTA. The (continuous

state) MDP associated with M is),,,()(0 PsSActMD = where)}(,|),{(XVLllS ∈∈= ηη ,

()0,00 lS = and for each edge ζ
α

 →
grd

l
,

 in M with 0)
'

,(>= plXζ and any grd=|η , we

have :

ττη
τ

αζ dp
gR

lE
elEAlP).(1.

0

)(
)(),),,((+

≥

−
= ∫ (1)

where }| and]0)[(' .0 |)','{(grdXRlA =+=+=≥∈∃= τητηητη and 1g(.) is a boolean function where

 =+

=+
otherwise 0

,| if 1
)(1

g

g

ητ
ητ .

Note that the set A in Definition 5 is indeed a zone [8]. More precisely, for a state),(ηl , time

duration t, and set of clocks X⊆X a zone is defined as

} xif 0 , xif 0|){(),),Zone((Xtη(x)(x)
'
ηX(x)

'
η

'
l,ηXtl,η ∉≤−≤∈== which includes all states with

location l and clock valuations that either set a clock variable x to 0 or add duration t to x. In

fact, for a transition ζα → grd
l

,
 if the clock valuation is η (when transition occurs) and

0)
'

,(>= plXζ , then for each clock variable Xx ∈ we should have 0)(=′ xη and for other clock

variables Xx ∉′ , txx ′+′=′′)()(ηη where tt ≤′≤0 . We can also suppose that grdt =′ |)(η for

those t′ . As a consequence, we have the following result:

For a transition ζ
α

 →
grd

l
,

 in M with 0)
'

,(>= plXζ and grd=|η we have

∫
=

=
+

−
=

t

0
dτ .p τ)(η

g
1 .

)τE(
)eE(X))t,η),,'Zone((α,η),,P((τ

τ

l
lll (2)

where t is the maximum value that grdt =+ |η . We use MDP(M) for associated MDP of a given

MTA M .

Definition 6 (Zone equivalency). Let R be an equivalence relation on the set of states of

MDP(M). Suppose s1 and s2 are two states of MDP(M) such that s1 R s2. For each set of clock

variables XYX ⊂, and each 0≥∈ Rt we have),,(),,(21 YtsZoneRXtsZone if and only if for each

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.4, July 2016

27

state)Xt,,
1

Zone(s
1
' ∈s there exists a state)Yt,,

2
Zone(s

2
s' ∈ that ′′

2
s R

1
s . Moreover, we can

develop definition of partitions on zones. Like [s]R that shows the block of states equivalent to s

we define:

)},t,
1

 Zone(sR)Xt,,
1

Zone(s|),t,
1

Zone(s{
R

)]Xt,,
1

[Zone(s xx ′′ ′′=
′′ (3)

In fact this definition shows the class of equivalent states related to some zones. Moreover, for an

MTA M we show the set of all (accessible) zones by Zones(M). A zone is accessible if all of its

states are accessible. On the other hand, the number of all accessible zones is in general infinite.

In many cases, definition of bisimulation and simulation relations for Probabilistic Transition

Systems are based on the probability of performing transition from a state to a class of states

(related to equivalence relation) [3, 4, 7, 10]. We can generalize the above equation for classes of

zones:

Definition 7. Let
R

Zones(M)/C ∈ be an equivalence class under relation R. Suppose that all

CZ∈ are pair wise disjoint. For any) η, (ls = we define ∑
∈

=

Cz

),,)P((l, C)α,η),P((l, zαη . In

other words, probability of reaching from s to a class of zones C is equal to sum of probability of
reaching from s to any members of C. The definition of semantic of MTA (like other probabilistic

automata) is based on the probability of transition from one state to a class of states. But because

transitions in MTA are continuous time, the probability of reaching to a destination state from
some source states is defined based on cylinder sets. In the following we review the concept of

cylinder set [8674].

Definition 8. (Cylinder set) Given an MTA M, we show a cylinder set by

),,,...,,,(11000 nnn lIIlC −−αα where
1

0),...,(+∈ n

n Locll and 0≥⊆ RI i . The cylinder set denotes a

set of infinite paths ρ in M such that ili =][ρ and iIi >∈<ρ . Let)(Pr 0 C
M

η denote the probability

of C (probability of paths that belong to C) such that the initial clock valuation in location 0l is

0η . Formally)(P:)(Pr 000 ηη
MM

C = , where)(P i

M

i η is defined as follows:

0)1(.).(1.).(

 1
)(P

1

)(

<≤++

=
=

+
−

∫ niifdPpelE

niif

i

M

iiig

lE

i
i

M

i

i

i τητη
η τ where]0X)[(1 =+=+ iii τηη . In fact

)(P i

M

i η shows the probability of set of transitions, according to C that starts from il with clock

valuation iη to nl .

With Cylinder set, we can extend definition (1) and replace a Cylinder set instead of the set A:

)'(Pr),,,(0 CCIsP MM

ηα = where),(0ηls = and),,,(' CIlC α= .

3. Bisimulation Relation for MTA

In many types of probabilistic automata a bisimulation is an equivalence relation R such that

21s Rs if the probability of reaching any equivalence class for both s1 and s2 is equal. But it is not

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.4, July 2016

28

the case for MTA (also not for PTA) because the number of classes is infinite and the probability

of reaching a class of equivalence states is zero. (Remember the relation (1) in definition 3) To

solve this problem we use the concept zones (or set of classes like [3]).

Because the definition of bisimulation is based on semantic of an automaton, we define it for

MTA as follows:

Definition 8. (Bisimulation) Two states)
1

,
1

(
1

ηls = and)
2

,
2

(
2

ηls = are bisimular if

1- For each
R

Zones(M)/C ∈ and each Act∈α : C)α,,
2

P(s C)α,,
1

P(s = ,

2- For each d >= 0 the above condition holds for s1 + d and s2 + d i.e after any time step (and

before a location transition) either any of two states reach bisimular states or a deadlock
occurs for both.

 If we have some locations as final locations we should add third condition to above:

3- Either
f

Ll ∈
1

 and
f

Ll ∈
2

 or
f

Ll ∉
1

 and
f

Ll ∉
2

.

We write
21

s
R

s ≈ (or simply
21

ss ≈) if
1

s and
2

s are bisimular. Two locations
1
l and

2
l are

bisimular (we denote
21

ll ≈) if two states)0,(
11
ls = and)0,(

22
ls = are bisimular. As a result we

can define a partition on the set of locations of a MTA. In this case a partition for LOC is a set

},...,{
1 k

BB=Π such that φ≠
i

B (for ki ≤<0),) ,0 (jiandkjifor
j

B
i

B ≠≤<=∩ φ ,

iki BLoc ≤<∪= 0 and for each l and 'l such that ' ll ≈ iff there exists a block Π∈
i

B that

i
Bll ∈∈ ' and B

i .

We can also extend the definition of bisimulation to cylinder sets and show that if
21

ss ≈ then the

probability of reaching any final location under particular sets of bisimilar cylinder sets will be

equal. For two sequences as the form nnnn
lIlIlIl ,,,,...,,,,,,

111111000 −−−
= ααασ and

nnnn
lIlIlIl ',',',',...,',',',',',''

111111000 −−−
= ααασ (where n > 0) two cylinder sets)(σC And)'(' σC

are bisimular if for each ni ≤≤0 : ii 'αα = and
i

I
i

I '= and
i

l
i

l '≈ (that means
i

l and
i

l ' belong to

the same block.) . This means that for each path in)(σC there is a path in)'(' σC that their

actions and time intervals are stepwise the same and their locations are stepwise bisimular.

A set of all bisimular cylinder sets defines a block cylinder set. Formally a block cylinder set

denoted by),,,...,,,(_ 11000 nnn BIIBCBlock −−αα is defined as

),,,...,,,(11000
0,

nnn
niBl

lIIlC
ii

−−
≤≤∈

∪ αα where each
iB is a Block of bisimulation relation.

Notice that we can define the probability of a block cylinder set as the sum of probability of its

cylinder sets:)),,,...,,,(_(Pr 110000 nnn

M BIIBCBlock −−ααη
 = ∑

∈
−−

ii Bl

nnn

M lIIlC)),,,...,,,((Pr 110000 ααη
. So

we can redefine bisimulation relation for states as the probabilities of block cylinder sets:

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.4, July 2016

29

Theorem 1: two states)
1

,
1

(
1

ηls = and)
2

,
2

(
2

ηls = are bisimular if for any block cylinder set

Block_C and any Act∈α and interval
0≥⊆ RI we have)_,,,(1 CBlockIsP

M α =

)_,,,(2 CBlockIsPM α

Proof: By induction on the length of Block_C.

Notice that according to Definition 8 one condition for bisimularity of two states)
1

,
1

(
1

ηls = and

)
2

,
2

(
2

ηls = is that)
2

()
1

(lElE = . We use this condition in the first step of decision algorithm for

bisimulation.

4. CONCLUSION AND FUTURE WORKS

 In this paper we have defined the bisimulation relation for markovian timed automata and have

shown that by this definition we can reduce the state space of a MTA. Also we review some

definitions that are necessary for decision algorithm for bisimulation of MTA.

We have many future works to be done. First of all we want to propose an algorithm for deciding

bisimulation relation for MTA. Also we can show some other applications of bisimulation for

MTA. In addition to this one can define a logical characterization of timed-abstract bisimulation

and study bisimulation from logical point of view.

REFERENCES

[1] Kwiatkowska, M., Norman, G., Segala, R., & Sproston, J. (2002). Automatic verification of real-time

systems with discrete probability distributions.Theoretical Computer Science, 282(1), 101-150.

[2] Sproston, J., & Troina, A. (2010). Simulation and bisimulation for probabilistic timed automata (pp.

213-227). Springer Berlin Heidelberg.

[3] Lanotte, R., Maggiolo-Schettini, A., & Troina, A. (2010). Weak bisimulation for probabilistic timed

automata. Theoretical Computer Science, 411(50), 4291-4322

[4] Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theoretical computer science, 126(2),

183-235.

[5] Baier, C., & Katoen, J. P. (2008). Principles of model checking (Vol. 26202649, pp. 19-82).

Cambridge: MIT press

[6] Baier, C., Engelen, B., & Majster-Cederbaum, M. (2000). Deciding bisimilarity and similarity for

probabilistic processes. Journal of Computer and System Sciences, 60(1), 187-231.

[7] Chen, T., Han, T., Katoen, J. P., & Mereacre, A. (2010). Computing maximum reachability

probabilities in Markovian timed automata. Technical report, RWTH Aachen.

[8] Tripakis, S., & Yovine, S. (2001). Analysis of timed systems using time-abstracting

bisimulations. Formal Methods in System Design, 18(1), 25-68.

[9] Larsen, K. G., Pettersson, P., & Yi, W. (1997). UPPAAL in a nutshell.International Journal on

Software Tools for Technology Transfer (STTT), 1(1), 134-152

[10] Kwiatkowska, M., Norman, G., & Parker, D. (2002). PRISM: Probabilistic symbolic model checker.

In Computer performance evaluation: modelling techniques and tools (pp. 200-204). Springer Berlin

Heidelberg.

[11] Brázdil, T., Korenčiak, Ľ., Krčál, J., Novotný, P., & Řehák, V. (2015). Optimizing performance of

continuous-time stochastic systems using timeout synthesis. In Quantitative Evaluation of

Systems (pp. 141-159). Springer International Publishing

International Journal of Software Engineering & Applications (IJSEA), Vol.7, No.4, July 2016

30

[12] Legay, A., Sedwards, S., & Traonouez, L. M. (2014). Scalable verification of Markov decision

processes. In Software Engineering and Formal Methods(pp. 350-362). Springer International

Publishing.

