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ABSTRACT 

 Fractal Image Compression is a well-known problem which is in the class of NP-Hard problems. Quantum 

Evolutionary Algorithm is a novel optimization algorithm which uses a probabilistic representation for 

solutions and is highly suitable for combinatorial problems like Knapsack problem. Genetic algorithms are 

widely used for fractal image compression problems, but QEA is not used for this kind of problems yet. 

This paper improves QEA whit change population size and used it in fractal image compression. Utilizing 

the self-similarity property of a natural image, the partitioned iterated function system (PIFS) will be found 

to encode an image through Quantum Evolutionary Algorithm (QEA) method Experimental results show 

that our method has a better performance than GA and conventional fractal image compression 

algorithms. 
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1. INTRODUCTION 

Fractals exist in nature widely. Fractal images contain few amount of information, but posses 

high-level of visual complexity [1]. Fractal image compression is potentially a great coding 

scheme since it features a high compression ratio and good retrieved image quality. In recent 

years, many researchers have studied and improved the fractal image encoding and have gotten a 

lot of achievements. In 1988, the fractal image compression was firstly proposed and utilized a 

number of affine mappings to denote the original image. Those mappings are iterated convergent 

and their limit is very close to the original image. In 1992, Jacquin introduced an automatic 

encoding algorithm for the first time that called baseline fractal image compression or BFC [2–6]. 

This method breaks the original image into sub-blocks and needs to find the best matched sub-

blocks according to self-similarities in the image. BFC makes the fractal image encoding become 

a very hopeful technique to improve the storage schemes applied in the consumer electronics.  
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Although BFC is very charming, a great deal of time cost during encoding limits it to widely 

practical applications. In order to solve this problem some improved approaches have been 

presented. In [6-7] authors proposed classification methods base on the feature of domain blocks. 

[8] proposed a kind of neighborhood matching method based on spatial correlation which makes 

use of the information of matched range blocks and effectively reduced the encoding time. 

Quantum Evolutionary Algorithms are novel algorithms using probabilistic representation for 

possible solutions. This algorithm used in several problem but is not use in fractal image 

compression. Genetic algorithm is widely used in fractal image compression. In [9] a new method 

for finding the IFS code of fractal image is developed and the influence of mutation and the 

crossover is discussed. The low speed of fractal image compression blocks its way to practical 

application. In [10] a genetic algorithm approach is used to improve the speed of searching in 

fractal image compression. A new method for genetic fractal image compression based on an 

elitist model in proposed in [11]. In the proposed approach the search space for finding the best 

self similarity is greatly decreased. Reference [12] makes an improvement on the fractal image 

coding algorithm by applying genetic algorithm. Many researches increase the speed of fractal 

image compression but the quality of the image will decrease. In [13] the speed of fractal image 

compression is improved without significant loss of image quality.  

Reference [14] proposes a genetic algorithm approach which increases the speed of the fractal 

image compression without decreasing of the quality of the image. In the proposed approach a 

standard Barnsley algorithm, the Y. Fisher based in classification and the genetic compression 

algorithm with quad-tree partitioning are compared. In GA based algorithm a population of 

transformations is evolved for each range block. In order to prevent the premature convergence of 

GA in fractal image compression a new approach is proposed in [15], which controls the 

parameters of GA adaptively. A spatial correlation genetic algorithm is proposed in [16], which 

speeds up the fractal image compression algorithm. In the proposed algorithm there are two 

stages, first the spatial correlations in image for both the domain pool and the range pool is 

performed to exploit local optima. In the second stage if the local optima were not certifiable, the 

whole of image is searched to find the best self similarity. A schema genetic algorithm for fractal 

image compression is proposed in [17] to find the best self similarity in fractal image 

compression. 

 Size of the population is an effective parameter of the evolutionary algorithms and has a great 

role on the performance of EAs. Several researches investigate the effect of population size and 

try to improve the performance of EAs with controlling the size of the population. A functional 

sized population GA with a periodic function of saw-tooth function is proposed in [21]. 

Reference [22] finds the best population size for genetic algorithms. Inspired by the natural 

features of the variable size of the population [19,23] presents an improved genetic algorithm 

with variable population-size. In [24] an adaptive population size for the population is proposed 

for a novel evolutionary algorithm. In this paper, to improve performance of fractal image 

compression, a sinusoidal function which changes size of population in each iteration is used. 

This paper is organized as follow: Section 2 introduces the basics theoretical of fractal image 

compression. In Section 3, we describe QEA and then introduce sinusoidal function for 

population size in  QEA for fractal image compression in section 4. Section 5 shows the 

experimental results and finally Section 6 concludes the paper. 
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2. THEORETICAL BASICS OF FRACTAL IMAGE COMPRESSION 

The fractal image compression is based on the local self-similarity property and PIFS. The 
related definitions and theorems are stated as follows[5-6]: 

 

Definition 2.1. Let X be a metric space with metric xd . A map XXw →: is Lipschitz 

with Lipschitz factor s, if there exists a real value s such that 

 

            Xyxsyxdxsywxwdx ∈∀〈〈≤ ,,10),,())(),((                     (1) 

We also say that w is contractive with contractivity s. 

 

Definition 2.2. Let X be a metric space and xd be its metric. For a point Xx ∈   and a nonempty 

set XA ⊆ , let us first define the distance of x to A by 

           ),(inf),( axdAxd x
Aa

y
∈

=                                                 (2) 

Then the Hausdorff distance between A and B is defined for any nonempty sets A, XB ⊆   as 

          )),(),,((),( ABdBAdMaxBAd hh=                         (3) 

Where 

         ),(sup),( BadBAd Y
Aa

h
∈

=                          (4) 

Let X be the set of N × N gray level images. The metric is defined as the usual Euclidean distance 
by regarding the elements in X as vectors of dimension N × N. Let I be a given image belonging 
to X. The goal is to find a set of transformations },...,,{ 21 nwww , each of which is a restricted 
function and satisfies (1), such that the given image I is an approximate attractor. The set 

},...,,{ 21 nwww  is called PIFS. The following theorem is an important fact for PIFS. 

 

Theorem 2.1. Consider a PIFS nwww ,...,, 21  with wi: X→X for all i. Let W =Uwi . Then there 
exists a unique point XA ∈   such that for any point XB ∈  

        )()( BwLimAWA
n

n

∞→

==                                            (5) 

The point A in (5) is called the fixed point or the attractor of the mapping W. Next, the famous 
Collage theorem will be introduced.  

Theorem 2.2. Let },...,,{ 21 nwww  be a PIFS with contractivity   factor s. Let B be any 
nonempty compact set in X. Then we have 

       ))(,()1(),( 1 BWBdsBAd −−≤                                  (6) 

where A is the attractor of the mapping W and d is the Hausdorff metric (3). 
Let ε≤))(,( IWId  where e is a very small positive real number. By the Collage theorem, one can 
obtain that 

       
ε

ε

−
≤

1
),( IAd                                                          (7) 
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From Eq. (7), one can see that after a large number of iterations, an attractor A is generated which 
is sufficiently close to the given image I. 

 
For practical implementation, let I be a given 256 × 256 gray level image. The domain pool D is 
defined as the set of all possible blocks of size 16 × 16 of the image f, which makes up        (256-
16+1) × (256-16+1) =58081 blocks. The range pool R is defined to be the set of all non-
overlapping blocks of size 8×8, which makes up (256/8) × (256/8) = 1024 blocks.  

 
For each block v from the range pool, the fractal transformation is constructed by searching all 
elements in the domain pool D the most similar block. Let u denote a sub-sampled domain block 
which is of the same size as v. The similarity of u and v is measured using Mean Square Error 
(MSE) defined by 

        [ ]2
7

0

7

0
2

),(),(
8

1
jivjiuMSE

IJ

−= ∑∑
−−

                                       (8) 

The fractal transformation allows the dihedral transformation of the domain blocks, i.e., the eight 
orientations of the blocks generated by rotating the blocks counterclockwise at angles 0, 90, 180, 
and 270 degrees and flipping with respect to the line y = x, respectively.  Thus, for a given block 
from the range pool, there are 58081×8 = 464,648 MSE computations to obtain the most similar 
block from the domain pool. Thus, in total, one needs 1024 × 464,648 = 475,799,552 MSE 
computations to encode the whole image using this full search compression method. 

For a given range block v, the fractal transformation also allows the adjustment of the 

contrast p and the brightness q on the subsample domain block u. The similarity is 

measured by the quantity vqupd k −+= . , where ku , 70 ≤≤ k ,are the eight orientations of 

u. By simple optimization method, p and q can be computed directly as 

        
]1,,[

]1,1,,[
2〉〈−〉〈

〉〉〈〈−〉〈
=

uuuN

vuvuN
p                                          (9) 

 And 

       ]1.1..[1 〉〈−〉〈= −
upvNq                                      (10) 

 

Where N=64. 

The position of the most similar domain block, the contrast p, the brightness q, and the orientation 

k constitute the fractal code of the given range block v. In practice, for 256 ×256 image, 16 bits 

are required to represent the position of the domain block. Finally, as v runs over all 1024 range 

blocks in the range pool R, the encoding process is completed. 

To decode, one first makes up the 1024 affine transformations from the compression codes and 

chooses any initial image. Next, one performs the 1024 affine transformations on the image to 

obtain a new image, and then proceeds recursively. According to Theorems 2.1 and 2.2, the 

sequence of images will converge. The stopping criterion of the recursion is designed according 

to user’s application and the final image is the retrieved image of fractal coding. 
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3. QUANTUM EVOLUTIONARY ALGORITHMS 

QEA is inspired from the principles of quantum computation, and its superposition of states is 

based on q-bits, the smallest unit of information stored in a two-state quantum computer [18,20]. 

A q-bit could be either in state “0” or “1”, or in any superposition of the two as described below: 

 

     10 βαψ +=                                                      (11) 

 

Where α and β are complex number, which denote the corresponding state appearance 

probability, following below constraint: 

 

    1
22

=+ βα                                                           (12) 

 

This probabilistic representation implies that if there is a system of m q-bits, the system can  

represent m2  states simultaneously. At each observation, a q-bits quantum state collapses to a 

single state as determined by its corresponding probabilities. 

3.1 Representation 

QEA uses a novel representation based on the above concept of q-bits. Consider ith  individual in 

tth  generation defined as an m-q-bit as below: 
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Where 1|||| 22 =+ t
ij

t
ij βα , j=1,2,…,m , m is the number of q-bits, i.e., the string length of the q-bit 

individual, i=1,2,…,n , n is the number of possible solution in population and t is generation 

number of the evolution. Since a q-bit is a probabilistic representation, any superposition of states 

is simultaneously represented. If there is, for instance, a three-q-bits(m = 3) individual such as 

(14): 
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Or alternatively, the possible states of the individual can be represented as: 

 

     111100101100011010001000
2

1

32

1

22

1
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1

2

1
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1

22

1
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1 +++++++=t
iq              (15) 

 

Note that the square of above numbers are true probabilities, i.e. the above result means that the 

probabilities to represent the state 
010,100,001,000

 are 1/24, 1/8, 1/24 and 1/12 respectively. 

Consequently, the three-q-bits system of (14) has all eight states information at the same time. 
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Evolutionary computing with the q-bit representation has a better characteristic of diversity than 

classical approaches since it can represent superposition of states. Only one q-bit individual such 

as (14) is enough to represent eight states, whereas in classical representation eight individuals 

are needed. Additionally, along with the convergence of the quantum individuals, the diversity 

will gradually fade away and the algorithm converges. 

3.2 QEA Structure 

In the initialization step of QEA, [ ]Tt
ij

t
ij βα of all 0

iq  are initialized with
2

1 . This implies 

that each q-bit individual 0
iq  represents the linear superposition of all possible states with 

equal probability. The next step makes a set of binary instants; t
ix  by observing 

},...,,{)( 21
t
n

tt qqqtQ = states, where ( ) },...,,...,,{ 21
t
n

t
i

tt
xxxxtX =  at generation t is a random instant of 

q-bit population. Each binary instant, t
ix  of length m, is formed by selecting each bit 

using the probability of q-bit, either 2
||

t
ijα  or 2

||
t
ijβ  of t

iq . Each instant t
ix  is evaluated to 

give some measure of its fitness. The initial best solution )}({max
1

t
i

n

i
xfb

=
=  is then selected 

and stored from among the binary instants of X(t). Then, in update Q(t), quantum gates U  

update this set of q-bit individuals Q(t) as discussed below. This process is repeated in a 

while loop until convergence is achieved. The appropriate quantum gate is usually 

designed in accordance with problems under consideration. 

3.3  Quantum Gates Assignment 

The common mutation is a random disturbance of each individual, promoting exploration while 

also slowing convergence. Here, the quantum bit representation can be simply interpreted as a 

biased mutation operator. Therefore, the current best individual can be used to steer the direction 

of this mutation operator, which will speed up the convergence. The evolutionary process of 

quantum individual is completed through the step of “update Q(t).” A crossover operator, 

quantum rotation gate, is described below. Specifically, a q-bit individual t
iq  is updated by using 

the rotation gate U(θ) in this algorithm. The jth  q-bit value of ith  quantum individual in 

generation t Tt
ij

t
ij ][ βα  is updated as: 
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Where ∆θ is rotation angle and controls the speed of convergence and determined from Table I. 

Reference [18] shows that these values for ∆θ have better performance. 
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TABLE I.    Lookup table OF θ∆ . 
 

ix
 ib

 
)()( bfxf ≥
 

θ∆
 

0 0 false
 0  

0 0 true  0  
0 1 false

 π01.0  
0 1 true  0  
1 0 false

 π01.0−  
1 0 true  0  
1 1 false

 0  
1 1 true  0  

 

4. SINUSOIDAL FUNCTION FOR POPULATION SIZE IN QUANTUM 

EVOLUTIONARY ALGORITHMS FOR FRACTAL IMAGE COMPRESSION 

(SFPSQEAFIC) 

One of the main approaches to maintain the diversity of the population and improve the 

performance of the evolutionary algorithms is using a variable size for the population. In [19] a 

variable size population is proposed for QEA that improves the performance of QEA. Here, we 

use a sinusoidal function for the size of the population with partially re-initialization of the q-

individuals which case to improve the performance of QEA for fractal image compression. The 

proposed SFPSQEA method for fractal image compression is block-based, i.e., each q-individual 

is composed of the parameters of an affine transformation for one range block. The setup of  our  

method is summarized as follows: 

1. An important part of SFPSQEAFIC is q-individuals formation. Since the fractal encoding 
utilizes the PIFS to encode every range block, one takes the absolute position ),( yx PP  of a 
domain block and the dihedral transformation tP  to constitute a q-individual. A q-
individual is 19 bits in length as shown in Fig. 1, in which 8, 8, and 3 bits are allocated 
for ),( yx PP  and tP , respectively. xP  shows the horizontal position of domain block, yP  
shows the vertical position of the domain block and tP  shows the transformation. The 
transformations are the 8 ordinary transformations: rotate 0°, 90°, 180°, 270°, flip 
vertically, horizontally, flip relative to 45°, and relative to 135°. Each part of each 
solution is a real number and is converted to an integer number before evaluation process. 
The length of q-individual for a M×N image is: 

   [ ] [ ] 3loglog 22 ++= NML                           (17) 

 

xP  yP  tP  

 

Figure 1. The coding of the addresses for domain blocks. xP  is the 

horizontal position of domain block, yP  is the vertical position of 

domain block and tP  is the transformation. 
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2. For power of q-individuals (fitness function), the distance of both range block and sub-

sampled domain block is measured by MSE. The fitness value is defined as the reciprocal 

of MSE. 

3. set t=0. 
 

4. initialize quantum population Q(0) with the size of  n(0) = n .  

In the initialization step, the quantum-individuals 0
iq  are located in a structured 

population. Then [ ]Tii
00 βα  of all 0

iq  are initialized with
2

1 , where i=1,2,…,n is the  

location  of  the  q-individuals  in  the  population,  k=1,2,...,m,  and  m  is the  

 

number of q-bits in the individuals. This implies that each q-bit individual 0
iq  represents 

the linear superposition of all possible states with equal probability.. 
 
5. make X(0) by observing the states of Q(0). 

This step makes a set of binary instants },...,2,1{)0( 0 nixX i ==  at generation t=0 by 

observing },...,2,1{)0( 0 niqQ i ==   states, where X(t) at generation t is a random instant of 

q-bit population and  n is the size of population. Each binary instant, x0i of length m, is 

formed by selecting each bit using the probability of q-bit, either 
2

0
,kiα or  

2
0
,kiβ of 0

iq  

Observing the binary bit t
kix ,   from q-bit [ ]Tt

ki
t
ki ,, βα performs as: 
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 <

=
otherwise1

||)1,0R(0
2

,
,

t
kit

ki

if
x

α
          (18) 

Where ),R( ⋅⋅ is a uniform random number generator.  

 
6. Evaluate X(0).  

Each binary instant 0
ix  is evaluated to give some measure of its objective. In this step, the 

fitness of all binary solutions of X(0) are evaluated. 

 
7. for all binary solutions 0

ix  in X(t) do. 
    Begin  

7.1  find neighborhood set iN in X(0). 

7.2  find binary solution x with best fitness in iN . 

7.3  save x in iB . 

                End. 
 

In these steps the neighborhood set iN  of all binary solutions 0
ix in X(0) are found and 

the best solution among iN is stored in iB . In the structured proposed algorithm each 

individual is the neighbor of itself that is ix  belongs to neighborhood set iN . iB is the 

best possible solution, which the q-individual t
iq  has reached. 
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8. Repeat not termination condition. 

 
The loop is terminated when the termination condition is satisfied. Termination condition 

here is when maximum number of iterations is reached. 

 
9. Set t= t+1. 

 
10. )()( tftn = . 

In the proposed algorithm, the size of the population is a function of the iteration number. 
This function is Sinusoidal function that shown in below: 
 

               




 −+= ).1.2sin()( tTAnRoundtn π          (19) 

Where n(t) is the size of the population in generation t, n is the average size of the population, A 
is the amplitude of the periodic function of population size, T is the period of the function of 
population, Round(.) is the round function (rounds its input to nearest integer). Fig.2 shows this 
function. In this step, n(t), the size of the population in iteration t, is calculated by this function. 

 
11. If n(t)>n(t-1) create random q-individuals. 

       If n(t), the size of the population in iteration t, is greater than n(t-1), it means that the size 

of the population is increased. So creating random q-individuals, until the size of ring 

structured population be equal to n(t). 

 
12. If n(t)<n(t-1) eliminate the q-individuals with worst observed fitness. 

      If n(t), the size of the population in iteration t is smaller than n(t-1), eliminate the q-

individuals which have the worst observed solution, until the size of  ring structured 

population reaches n(t). 

 
13. Make X(t) by observing the states of Q(t-1). 

      In this step, we are Observing the binary solutions X(t) from Q(t). 

 

 

Figure 2.The sinusoidal function which is use for the 

population size.  T is the period of the functions, A is the 

amplitude and P is the size of the population in generation t. 
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14. Evaluate X(t). 
 

15. Update Q(t) based on iB  and X(t) using Q-gates 
      Here, The quantum individuals are updated using Q-gate. 
 

16. Repeat for all binary solutions t
ix  in X(t) do 

                     Begin 
 
     16.1. find neighbourhood, set iN  in X(t). 
 
     16.2. select binary solution x with best fitness in iN . 
 
     16.3.  if x is fitter than iB  save x in iB  
  
End. 
 

The loop is for all binary solutions t
ix  (i=1,2,…,S) in the population and then  Finding the 

neighbors of the binary solution located on the location i. 

 
In next time we should find the best possible solution in the neighborhood iN , and store it to x. If  

x is fitter than iB  then store x to iB . 

 
For each range block to fine optimal domain block, this algorithm should be down.  
 

The Sinusoidal function for the population has two cycles. One cycle is increasing the size of 

population. In the increasing cycle, the new quantum individuals are created and inserted in the 

population. Creating new random quantum individuals increases the diversity of the population 

and improves the exploration performance of the algorithm. The other cycle is the decreasing 

cycle. In this cycle, the worst quantum individuals of the population are eliminated. This 

treatment improves the exploitation of the algorithm by exploiting the best solutions and ignoring 

the inferior ones. This means that the proposed method has two cycles: exploration cycle and 

exploitation cycle 

 
 

5. EXPERIMENTAL RESULTS 

This section experiments the proposed method and compares the proposed algorithm with the 

performance of GA in fractal image compression. The proposed algorithm is examined on images 

Lena, Pepper and Baboon with the size of 256×256 and gray scale. The size of range blocks is 

considered as 8×8 and the size of domain blocks is considered as 16×16. In order to compare the 

quality of results, the PSNR test is performed: 
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Where M×N is the size of image. 

 
 

Parameters in Sinusoidal function set by A=0.2 and T=100 that are the amplitude of the periodic 

function of population size and the period of the function of population respectively. The 

crossover rate in GA is 0.8 and the probability of mutation is 0.003 for each allele. Table II shows 

the experimental results on the proposed algorithm and GA. The number of iterations for GA and 

the proposed method for all the experiments is 200. According to Table II the proposed algorithm 

improves the performance of fractal image compression for all the experimental results. As it is 

clear in Table II, SFPSQEAFIC has better performance than GA in all the experiences. It shows  

that SFPSQEA is a suitable algorithm for fractal image compression. By using sinusoidal  

function, the performance of QEA is improved. Although the PSNR for the proposed algorithm is 

less than the full search algorithm for all the experiences, but the advantage of the proposed 

algorithm is lower computational complexity. For example for Baboon picture, full search 

algorithm performs 59,474,944 MSE computations, while the proposed algorithm with the 

population size of 30 performs 6,144,000 MSE computations, i.e. ten times less. The proposed 

method reaches an admissible result much less computational complexity. Fig.3 shows the 

experimental results on Lena for the proposed algorithm and GA. 
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TABLE II.  COMPARISON BETWEEN THE PROPOSED ALGORITHM AND GA. 

 
 

Picture Method 
Population 

size 
MSE computations PSNR 

Lena 

Full Search - 59,474,944 28.85 

SFQEA 

15 3,072,000 27.31 

20 4,096,000 27.72 

25 5,120,000 28.16 

30 6,144,000 28.27 

GA 

15 3,072,000 27.27 

20 4,096,000 27.55 

25 5,120,000 28.04 

30 6,144,000 28.11 

Pepper 

Full Search - 59,474,944 29.85 

SFQEA 

15 3,072,000 28.19 

20 4,096,000 28.71 

25 5,120,000 28.97 

30 6,144,000 29.29 

GA 

15 3,072,000 2811 

20 4,096,000 28.64 

25 5,120,000 28.92 

30 6,144,000 29.14 

Baboon 

Full Search - 59,474,944 20.04 

SFQEA 

15 3,072,000 18.44 

20 4,096,000 18.73 

25 5,120,000 19.04 

30 6,144,000 19.21 

GA 

15 3,072,000 18.41 

20 4,096,000 18.65 

25 5,120,000 19.02 

30 6,144,000 19.17 
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                    (a)                                           (b)                                            (c) 

 

    

             (d)                      (e) 
Figure 3. (a) Original image Lena of size 256256 × ,(b) initial image for the decoder of the fractal 

compression, (c) full search method, (d) proposed SFPSQEA method, (e) GA method. 

 

6. CONCLUSIONS 

This paper uses a functional sized population in QEA for fractal image compression. Quantum 

Evolutionary Algorithms are novel algorithm proposed for combinatorial optimization problems 

like knapsack problem. Since fractal image compression is in the class of NP-Hard problems, 

QEA is highly suitable for this problem but is not properly applied to fractal image compression 

yet. One of the main approaches to maintain the diversity of the population and improve the 

performance of the evolutionary algorithms is using a variable size for the population. This paper 

uses a sinusoidal function for the size of the population with partially re-initialization of the q-

individuals that case to improve the performance of QEA for fractal image compression. Finally 

experimental results on Lena, Pepper and Baboon picture show an improvement on fractal image 

compression. Experimental result shows that the performance of our method is upper than 

conventional method from the encoding speed and it is better than from GA in retrieved image 

quality. 
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