
International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

DOI : 10.5121/vlsic.2013.4602 13

ACCELERATING SYSTEM VERILOG UVM BASED VIP

TO IMPROVE METHODOLOGY FOR VERIFICATION

OF IMAGE SIGNAL PROCESSING DESIGNS USING

HW EMULATOR

Abhishek Jain
1
, Piyush Kumar Gupta

2
, Dr. Hima Gupta

3
and Sachish Dhar

 4

1
Imaging Group, STMicroelectronics, Greater Noida, India

1,3
JBS, Jaypee Institute of Information Technology (JIIT), Noida, India

2,4
SDS Group, STMicroelectronics, Greater Noida, India

ABSTRACT

In this paper we present the development of Acceleratable UVCs from standard UVCs in System Verilog

and their usage in UVM based Verification Environment of Image Signal Processing designs to increase

run time performance. This paper covers development of Acceleratable UVCs from standard UVCs for

internal control and data buses of ST imaging group by partitioning of transaction-level components and

cycle-accurate signal-level components between the software simulator and hardware accelerator

respectively. Standard Co-Emulation API: Modeling Interface (SCE-MI) compliant, transaction-level

communications link between test benches running on a host system and Emulation machine is established.

Accelerated Verification IPs are used at UVM based Verification Environment of Image Signal Processing

designs both with simulator and emulator as UVM acceleration is an extension of the standard simulation-

only UVM and is fully backward compatible with it. Acceleratable UVCs significantly reduces development

schedule risks while leveraging transaction models used during simulation.

In this paper, we discuss our experiences on UVM based methodology adoption on TestBench-Xpress

(TBX) based technology step by step. We are also doing comparison between the run time performance

results from earlier simulator-only environment and the new, hardware-accelerated environment. Although

this paper focuses on Acceleratable UVC’s development and their usage for image signal processing

designs. Same concept can be extended for non-image signal processing designs.

KEYWORDS

SystemVerilog, Universal Verification Methodology (UVM), TestBench-Xpress (TBX), Universal

Verification Component (UVC), Standard Co-Emulation API: Modelling Interface (SCE-MI), Acceleratable

UVC, Emulator, XRTL Tasks/Functions (xtf), Transactor interface (tif), Verification IP (VIP).

1. INTRODUCTION

Universal Verification Methodology (UVM) is a rich and capable class library that has evolved

over several years from much experience with real verification projects large and small, and

SystemVerilog itself is a large and complex language. As a result, although UVM offers a lot of

powerful features for verification experts, it can present a daunting challenge to Verilog and

VHDL designers who want to start benefitting from test bench reuse [5].

TestBench-Xpress (TBX) technology delivers the same functionality achievable in simulation

with advanced and simple debug capabilities, but at 10-1000x of times faster performance.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

14

Additionally, it greatly increases verification productivity by using the same testbench for

simulation and acceleration [16].

Usually in case of co-emulation with TBX technology where non-synthesizable HVL part

mapped on Host Machines communicates with HDL part which is mapped on Emulators through

SCEMI [14] or TBA standards wins race based on High performance efficient approach.

This paper describes development of Acceleratable UVCs from standard UVCs in System

Verilog and their usage in UVM based Verification Environment of Image Signal Processing

designs to increase run time performance. The Image signal processing algorithms are developed

and evaluated using Python models before RTL implementation. Once the algorithm is finalized,

Python models are used as a golden reference model for the IP development. To maximize re-use

of design effort, the common bus protocols are defined for internal register and data transfers. A

combination of such configurable image signal processing IP modules are integrated together to

satisfy a wide range of complex video processing SoCs [1], [2].

Verification Environment of Image Signal Processing IP and Sub-System is described in detail in

Section 4.

2. EMULATION APPROACH

Hardware Emulation has been matured enough in Industry used as an integral part of life-cycle

for any SoC and IP verification. As design is becoming more and more complex and moving

towards Multi-million to Billion gates size, emulation provides accelerated simulation

environment to help verification engineer finding bugs quite before silicon. In spite of being slow

from traditional FPGA prototyping, Emulation is getting increasingly famous for pre-silicon

validation where software engineers are able to develop software applications, boot Linux on SoC

etc. much before Silicon.

In-Circuit-Emulation mode is a traditional way where testbench and DUT both are synthesizable

and mapped on Hardware Emulator box to have faster performance. The same platform can be

used by Software engineers for pre-silicon validation. Software debug connections to emulation

have traditionally been handled using hardware-based, JTAG probe connections. Because JTAG

uses a serial data connection, performance is limited on the emulator.

In Cycle Accurate Co-emulation, the testbench is written and executed in HVL for greater

testbench performance. Signals are synchronized at clock boundaries. Clocks advance under

control of the HVL testbench. This approach makes complete system slower as there will always

be interaction with Hardware and Software at each clock.

In Transaction-Level Co-Emulation, the testbench is written in SystemC, C++ or SystemVerilog.

Packets of data (transactions) are exchanged between the testbench and the DUT. This reduces

the communication time between the host machine and emulator as data transfers are performed

in transaction level instead of signal level first approach. To do this, transactor should be

described in a synthesizable way to mapped on hardware emulator with DUT. Moreover, the

transactor design depends on both emulator system protocol and DUT protocol. Therefore,

transactor description would not only be time-consuming but also error-prone task [15].

2.1 SCE-MI INTERFACE

The Standard Co-Emulation Modelling Interface (SCE-MI) was first introduced at that time as a

way to standardize the communication between the hardware portion running in the emulator and

the software portion running on the Host Machine [14].

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

15

Figure 1: SCEMI-2 Infrastructure

2.2 TRANSACTION-BASED ACCELARATION

TBX establishes a SCE-MI compliant, transaction-level communications link between

testbenches running on a host system and SoC mapped on Veloce hardware emulation box.

Transaction-level verification is a verification methodology both in simulation and emulation. In

emulation it is further leveraged due to the superior performance that it yields. Transactors are an

important component in transaction-level verification, and serve as the bridge between a test

environment written in a Hardware Verification Language (HVL) and the DesignUnderTest

(DUT) inside the Veloce emulator. The Transactor is responsible for converting the high-level

HVL commands into low-level DUT pin wiggles (HDL), and handling the communication

between the two domains (HVL and HDL) (Figure 2) [16], [17].

A protocol transactor implements a protocol (AMBA, USB, ST Internal Protocol and so on)

which drives the DUT interface in a protocol-compliant way, and captures DUT responses into

high level protocol transactions.

Figure 2: Transactor Bridging from HVL to HDL

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

16

Due to the high-level interface at the HVL side, the verification environment is free from

modelling low-level protocol details, thus ensuring easy and more comprehensive test

development. This transaction-level verification environment can now run at full emulation

performance using Testbench-Xpress (TBX) and Veloce, without sacrificing much of the

functional coverage of the protocol [16], [17].

We have developed and used ST internal control and data bus Accelerated VIPs in our IP and

Subsystem level Verification Environment and also using standard Acceleratable UVC’s in SoC

Level Verification.

3. TBX TECHNOLOGY WITH UVM METHODOLOGY

A transaction can be defined as a transfer of data from one component to another that may or may

not consume time [12]. In any procedural language like C, SystemC or SystemVerilog, a

transaction is equivalent to a function call. TBX facilitates this through its support of remote

procedure invocation, whereby, tasks or function calls defined on one domain could be called

from the other.

For running on TBX, the environment must be partitioned into synthesizable XRTL compliant

HDL files and the HVL files containing the high-level test bench components and compiled

separately. So it will not be always needed to synthesize the HDL side which is time consuming.

Any transaction passed from HVL and HDL layers, via an xtf, must be packed into an equivalent

static packed data structure that could be synthesized by TBX. Similarly, the XRTL will send a

packed data structure that can be unpacked by the HVL to create transaction objects.

For such a scenario, it is best to divide the actual HVL transactor into a synthesizable XRTL

transactor interface (tif) and a non-synthesizable proxy class. The tif can have a handle to the

proxy class. The proxy class can contain a handle to the actual tif. The tif can call functions

defined in the proxy, and the proxy can call functions or tasks defined in the tif [16].

In below sections, we will describe the verification environment of Image signal Processing IP

and Subsystem and steps followed to convert standard UVC’s into Acceleratable UVC’s.

4. VERIFICATION ENVIRONMENT OF IMAGE SIGNAL PROCESSING IP AND

SUB-SYSTEM

In an image signal processing IP as shown in figure 3, there are A input video data interfaces, C

output video data interfaces, B memory interfaces, D output Interrupts and E register interfaces,

where A, B, C, D and E values can be from 0 to any arbitrary number [1].

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

17

Figure 3: Image Signal Processing IP Block Diagram

At subsystem level, all the R IP’s in Image signal processor pipe are connected serially. Generally

output data interface of one IP is connected to the input data interface of another IP as shown in

figure 4.

Figure 4: Image Signal Processing Subsystem Block Diagram

For verifying interfaces of an image signal processing IP, dedicated UVCs are used. In case of

register interface(s), register interface UVC and UVM_REG register model are used. Similarly

for video data interface(s), video data interface UVC is used.

Image

Signal

Proces

sing

IP1

Input video data

interface(s)

R

Register

Interfaces

Image

Signal

Proces

sing

IP2

Image

Signal

Proces

sing

IPr

Output video

data interface(s)

Image Signal

Processing IP

(RTL)

A

Input video data

interfaces

D

Output

Interrupts

E

Register

Interfaces

C

Output video

data interfaces

B

Memory

interfaces

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

18

Figure. 5 Basic blocks of System Verilog UVM based IP Level Verification Environment

Note that there can be multiple instances of these UVC’s in a verification environment. Each

agent is configured separately and any combination of agent configurations can coexist in the

same environment. Therefore in above case, E instances of register interface UVC agents and M

(M = max (A, C)) instances of video data interface UVC agents are used to interface with a DUT.

Figure 5 illustrates the basic blocks of System Verilog UVM based IP Level Verification

Environment [1].

Similar to IP Level Verification Environment, for verifying subsystem of image signal processor

also, we use internal video data interface UVC for video data interface and register interface UVC

and UVM_REG register model for register interface(s) as shown in figure 6.

Figure. 6 System Verilog UVM based Subsystem Level Verification Environment

Image

Signal

Proces

sing

IP1

Video

Data Bus

UVC

(Driver)

Register interface UVC

Image

Signal

Proces

sing

IP2

Image

Signal

Proces

sing

IPr

Video

Data Bus

UVC

(Receiver)

UVM_REG Register and Memory model

Subsystem Reference Model

Image

Signal

Processing

IP

(DUT)

Video

Data Bus

interface

UVC

REG

Register

and

Memory

Model

Register

Bus

Interface

UVC

Apply /

Collect

Test

Vectors

Test Environment

Apply /

Collect

Test

Vectors

Memory Model

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

19

4.1 Development of Acceleratable UVCs from standard UVCs

 A Simulation based Verification IP (VIP) is a SystemVerilog interface driving a DUT interface

(pin connections or SystemVerilog interface) on one side and connected to a test bench

environment on the other side (like SV, OVM, or UVM), through a transaction-based set of APIs

[3], [13].

Figure 7 shows Register Bus UVC’s environment.

• Constrained random generation of protocol stimulus and driven through the API layer

into the model. The model converts this high-level transaction into pin wiggles on the

DUT interface.

• The model also captures responses from the interface (bus) and creates a high-level

transaction the monitor recognizes on the test bench side. The monitor sends it to the

various analysis ports where coverage and scoreboard modules are connected.

Figure. 7 Comparison of Veloce Transactor to the Simulation Based VIP

Figure -7 gives a look for the Veloce Transactor comparison to the Simulation Based Control Bus

VIP. The verification environment in Veloce is in two domains: the XRTL (timed) portion of the

transactor in Veloce, and the HVL (untimed) portion in the workstation (software). Models

described using high-level language (HVL) constructs are executed by the simulator and the

models described using hardware description language (HDL) constructs are executed by the

hardware accelerator. Clocks and Reset are part of timed component and can be generated using

TBX clkgen pragma which allow tool to synthesize this behavioral code and make it reside on

Emulators [17], [18].

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

20

A UVM agent generally contains sequencer, driver, and monitor.

A sequence item is a transaction object from the sequencer that stimulates the driver [11]. In order

to transfer a data item from the proxy in the HVL portion to the BFM in the HDL portion, the

data members need to map into a packed struct Packet_t. Figure-8 shows the modelling of a

sequence item Packet and a corresponding SystemVerilog packed struct Packet_t which

represents synthesizable transaction of Packet.

Figure 8: two representations of transaction

The class-based control bus UVC’s driver receives a sequence item, converts it to a

SystemVerilog struct, and passes the transaction referred by a virtual interface. For conversion

between the two representations (mentioned above), we need to declare function

“from_class_to_struct” in driver class. In this model, the bus functional models (BFM) which are

XRTL tasks/functions to drive DUT pins are implemented in a synthesizable SV Transactor

interface. During the connect phase, the virtual interface of the UVM driver connects to a virtual

interface BFM (in Figure-9) which, at the end of the elaboration step, connects to the actual

transaction interface instance (driver_bfm_if).

`include "uvm_macros.svh"

class Packet extends uvm_sequence_item;

…

…

// Fields

 rand bit unsigned req;

 rand bit unsigned eop;

 rand bit [31:0] addr;

 rand bit [31:0] data;

 rand bit [3:0] be;

 bit unsigned r_req;

 bit [31:0] r_data;

 bit unsigned r_opc;

…

…

`uvm_object_utils_begin (Packet)

 `uvm_field_int (req, UVM_ALL_ON);

 `uvm_field_int (eop, UVM_ALL_ON);

 `uvm_field_int (addr, UVM_ALL_ON);

 `uvm_field_int (data, UVM_ALL_ON);

 `uvm_field_int (be, UVM_ALL_ON);

 `uvm_field_int (r_req, UVM_ALL_ON);

 `uvm_field_int (r_data, UVM_ALL_ON);

 `uvm_field_int (r_opc, UVM_ALL_ON);

`uvm_object_utils_end

Package Packet_t_pkg;

typedef struct packed {

 …

 …

 bit unsigned req;

 bit unsigned eop;

 bit [31:0] addr;

 bit [31:0] data;

 bit [3:0] be;

 bit unsigned r_req;

 bit [31:0] r_data;

 bit unsigned r_opc;

 …

 …

} Packet_t;

endpackage

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

21

Figure 9: Driver Proxy and Driver Interface

The synthesizable transaction interface (driver_bfm_if) contains functions and tasks to apply

transaction packets to DUT pins. It contains tasks that a UVM driver uses to write the transaction

item. Figure 9 shows the connection of an actual interface to a virtual interface and its connection

to the driver.

Below is Monitor implementation (Figure 10) of Control Bus UVC, where transaction interface

(monitor_bfm_if) contains task to apply DUT pins into transaction item. Interface task have a

proxy function call to transfer synthesizable transaction to proxy side monitor where proxy side

uses conversion from System Verilog struct to class sequence item type that can be further used

for scoreboarding and other purposes [17], [18].

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

22

Figure 10: Monitor Proxy and Monitor Interface

As shown in figure 11, The Virtual Interface Binding can be done easily at HVL top for concrete

interface instances. This complete model is native SystemVerilog and hence works in any

SystemVerilog compliant simulator [6], [19].

import Packet_t_pkg::*;

class monitor_proxy extends uvm_monitor;

Packet_t Packet_coll_s;

Packet Packet_coll;

//virtual monitor_interfae

virtual monitor_bfm_if BFM;
uvm_analysis_port #(Packet) item_collected_port;

…………………..

//build phase to get virtual interface

virtual function void build_phase (uvm_phase phase);

super.build_phase(phase);

uvm_config_db #(virtual monitor_bfm_if)::get(this,"","monitor_bfm_if",BFM);

if(BFM == null)

begin

`uvm_fatal("MONITOR_INTERFACE CONFIG ERROR", "driver_bfm_inf is not set in driver

proxy class");

end

endfunction

virtual task run_phase(uvm_phase phase);

 fork

 vif.collect_packet();

 join

 endtask : run_phase

 function void monitor_transaction (Packet_t Packet_coll_s);

 Packet_coll = Packet::type_id::create("Packet_coll", this);

 Packet_coll.req = Packet_coll_s.req;

 Packet_coll.eop = Packet_coll_s.eop;

 Packet_coll.addr = Packet_coll_s.addr;

 Packet_coll.data = Packet_coll_s.data;

 Packet_coll.be = Packet_coll_s.be;

 Packet_coll.r_req = Packet_coll_s.r_req;

 Packet_coll.r_data = Packet_coll_s.r_data;

 Packet_coll.r_opc = Packet_coll_s.r_opc;

 item_collected_port.write(Packet_coll);

 endfunction : monitor_transaction

Interface monitor_bfm_if ();

//pragma attribute monitor_bfm_if

partition_interface_xif

import Packet_t_pkg::*;

monitor_proxy proxy ; //HVL Monitor Class

definition

……………………

task collect_packet(); //pragma tbx xtf

 Packet_t Packet_collected;

 @(posedge clk);

 forever begin

 wait(r_req == 1);

 @(posedge clock);

 if(opc[0:0] == 0) begin

 packet_collected.addr = addr;

 packet_collected.be = be;

 packet_collected.eop = eop;

 packet_collected.req = req;

 packet_collected.data = data;

 ………………..

 end

………………

 proxy.monitor_transaction(packet_collected);

 end

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

23

Figure 11: Virtual Interface Binding

UVM_REG register and memory model is used to write register/memory sequences that access

hardware registers and memory areas and thus, it is used as generator in verification environment

and is independent of the DUT interface. UVM_REG Register and memory model is described

using high-level language (HVL) constructs and is executed by the simulator [10].

In the similar way, video data bus Acceleratable UVC from video data bus standard UVC is

developed and used in Image Signal Processing designs.

4.2 Guidelines and Performance

To implement the unified testbench for simulation and acceleration, we followed the following

coding guidelines:

• # Delays are not allowed in the testbench code.

• To achieve best performance, all code on the HVL testbench side must be untimed, and

all timed code should be synthesized.

• There should not be any direct signal access from the HVL side. All communication must

be transaction based.

5. RESULTS

Performance figure for Simulation vs. Emulation is described in below table.

Table 1: Performance comparison

Design Size Simulator

time(Seconds)

Co-Emulation

time(Seconds)

Gain in Co-emulation

over simulation

~5M gate ~657 ~20.44 ~30X

~9.5M gate ~2044 ~50.27 ~40X

6. CONCLUSIONS

In this paper, we presented the usage of fast growing UVM based unified co-emulation approach

in image signal processing designs. Development of Unified Acceleratable UVCs from standard

UVCs reduced development schedule risks while leveraging transaction models used during

simulation. The key architecture and implementation specific decision for this acceleration VIP

module test;

import uvm_pkg::*;

`include "uvm_macros.svh"

`include "register_test.sv"

initial begin

 uvm_config_db#(virtual driver_bfm_if)::set(null, "uvm_test_top.env.i_agent.drv", "driver_bfm_if",

testbench_hdl_top.DRIVER_BFM);

uvm_config_db#(virtual monitor_bfm_if)::set(null, "uvm_test_top.env.i_agent.mon",

"monitor_bfm_if", testbench_hdl_top.MONITOR_BFM);

run_test("register_test");

end

endmodule

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

24

are made to maximise the reuse of same tests in simulation and acceleration platforms. This

unified approach eliminated the penalty related to maintain different verification components for

different platforms.

Additionally, The completeness of this setup – use of same accelerated VIP with simulator and

emulator in UVM based Verification Environment gave us complete confidence that extension of

the standard simulation-only UVM to include hardware acceleration will make verification of

chips more productive. This approach take advantage of very fast emulator performance to handle

longer and more regressive tests to cover more design areas and uncovering design bugs. This

translates to regression tests that took hours to run in simulation are now taking few minutes to

run on emulators.

In our Imaging designs environment, some of the results which we had listed in table 1 [Section

5] are example where we have taken different design setup to run with simulator as well as on

emulator to estimate performance gain. While running a design of ~5Million gate size on these

platforms, a specific testcase on simulator was taking nearly ~657 seconds compare to ~20

seconds on emulator which shows significant performance gain of ~30X. In another case, a

different design of ~9.5 Million gate size have the performance gain of ~40X. This performance

gain can be further improved by adopting more efficient combination of streaming and reactive

transactions in future.

In emulation, code coverage is not completely supported so we mainly focused on functional

coverage. Using Acceleratable VIP, we achieved approximately same functional coverage goal as

with the standard simulation-only VIP.

ACKNOWLEDGEMENTS

The authors would like to specially thank to their management Giuseppe Bonanno (CAD

Manager, Imaging Division, STMicroelectronics) and Tran NGUYEN (Manager, SDS Emulation

Team) for their guidance and support. We would also like to thank management and team

members of Imaging Division, STMicroelectronics; Faculty members and peer scholars of JBS,

Jaypee Institute of Information Technology University and also Mentor Graphics team for their

support and guidance.

REFERENCES

[1] Abhishek Jain, Giuseppe Bonanno, Dr. Hima Gupta and Ajay Goyal, (2012) “Generic System Verilog

Universal Verification Methodology Based Reusable Verification Environment for Efficient

Verification of Image Signal Processing IPs/SOCs”, International Journal of VLSI Design &

Communication Systems 2012.

[2] Abhishek Jain, Mahesh Chandra, Arnaud Deleule and Saurin Patel, (2009) “Generic and Automatic

Specman-based Verification Environment for Image Signal Processing IPs”, Design & Reuse 2009.

[3] Mark Glasser, (2009) Open Verification Methodology Cookbook, Springer 2009.

[4] Iman, S., (2008) “Step-by-Step Functional Verification with SystemVerilog and OVM”, Hansen

Brown Publishing, ISBN: 978-0-9816562-1-2.

[5] Rosenberg, S. and Meade, K., (2010) “A Practical Guide to Adopting the Universal Verification

Methodology (UVM)”, Cadence Design Systems, ISBN 978-0-578-05995-6.

[6] Accellera Organization, Inc. Universal Verification Methodology (UVM) May 2012.

[7] IEEE Computer Society. IEEE Standard for System Verilog-Unified Hardware Design, Specification,

and Verification Language - IEEE 1800-2009. 2009.

[8] Virtual Register Interface Layer over VIPs from Cadence Design System.

[9] Spirit information, http://www.spiritconsortium.org.

[10] Accellera VIP TSC, UVM Register Modelling Requirements, www.accellera.org /activities/vip/

[11] www.ovmworld.org

[12] www.SystemVerilog.org

International Journal of VLSI design & Communication Syst

[13] www.uvmworld.org

[14] SCE-MI specification, http://www.accellera.org/downloads/standards/sce

[15] Mentor Graphics Emulation Site

[16] Mentor Graphics TestBench-XPress user guide

[17] Mentor Graphics Veloce user guide

[18] Mentor Graphics Veloce Transactor Library base user guide

[19] http://www.accellera.org/community/uvm/

AUTHORS

Abhishek Jain, Technical Manager, STMicroelectronics Pvt. Ltd.

Research Scholar, JBS, Jaypee Institute of Information Technology, Noida, India.
Email: ajain_design@yahoo.co.in;

 abhishek-mmc.jain@st.com

Abhishek Jain has more than 11 yea

activities on Functional Verification Flow in Imaging Division of STMicroelectronics.

He has done PGDBA in Operations Management from Sym

and M.Sc. (Electronics) from University of Delhi. His main area of Interest is Project Management,

Advanced Functional Verification Technologies and System Design and Verification especially UVM

based Verification, Emulation/Acceleration and Virtual System Platform. Currently he

Advanced Verification Methods for Efficient Verification Management in Semiconductor Sector.

Jain is a member of IETE (MIETE).

Dr. Hima Gupta, Associate Professor, Jaypee Business School (A constituent of

Jaypee Institute of Information Technology University), A

201 307 India.
Email: hima_gupta2001@yahoo.com

Dr. Hima has worked with LNJ Bhilwara Group & Bakshi Group of Companies for 5

yrs. and has been teaching for last 11 years as Faculty in reputed

also worked as Project Officer with NITRA and ATIRA at Ahmedabad for 5 years.

She has published several research papers in National & International journals

Piyush Kumar GUPTA, Verification and Emulation Methodology and Tools

Group Manager, ST Microelectronics Pvt Ltd Noida.

Email: piyush-kumar.gupta@st.com

Piyush Kumar GUPTA has B.Tech. Degree in Electronics and Communication from

reputed institute, Ram Manohar Lohia University Faizabad. He has around 15 years of

work experience, and currently leading Central Functional Verification and Emulation

Methodology Team to define and deploy new flow/tools in Verification and Emulation. Work closely with

global ST sites to effectively collaborate on various activities which involved many key research areas e.g.

Unified UVM Architecture for simulation and Emulation, U

Assertions generation, Graph based Test Generation etc.

His expertise is in Dynamic/Formal verification and Emulation R&D.

Sachish Dhar DWIVEDI, SDS Group, STMicroelectronics Pvt. Ltd.

Email: sachish.dwivedi@st.com

Sachish Dhar DWIVEDI has more than 8 years of direct experience in Industry. He

has done Masters in Technology from Motilal Nehru National Institute of

Technology, Allahabad in 2004. He is mainly responsible for SOC/IP

Verification/Pre-Silicon Validation u

Techniques. His main areas of interest are to develop Emulation methodologies, Evaluation of new

tools/techniques and support to various emulation based activities.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.6, December 2013

http://www.accellera.org/downloads/standards/sce-mi

Graphics Emulation Site, http://www.mentor.com/products/fv/emulation-systems/

XPress user guide

Mentor Graphics Veloce user guide

Mentor Graphics Veloce Transactor Library base user guide

http://www.accellera.org/community/uvm/

Abhishek Jain, Technical Manager, STMicroelectronics Pvt. Ltd.

Research Scholar, JBS, Jaypee Institute of Information Technology, Noida, India.

mmc.jain@st.com

Abhishek Jain has more than 11 years of experience in Industry. He is driving key

activities on Functional Verification Flow in Imaging Division of STMicroelectronics.

He has done PGDBA in Operations Management from Symbiosis, M.Tech in Computer Science from IETE

from University of Delhi. His main area of Interest is Project Management,

Advanced Functional Verification Technologies and System Design and Verification especially UVM

based Verification, Emulation/Acceleration and Virtual System Platform. Currently he is doing Research in

Advanced Verification Methods for Efficient Verification Management in Semiconductor Sector.

Jain is a member of IETE (MIETE).

Dr. Hima Gupta, Associate Professor, Jaypee Business School (A constituent of

Information Technology University), A – 10, Sector-62, Noida,

hima_gupta2001@yahoo.com

Dr. Hima has worked with LNJ Bhilwara Group & Bakshi Group of Companies for 5

yrs. and has been teaching for last 11 years as Faculty in reputed Business Schools. She

also worked as Project Officer with NITRA and ATIRA at Ahmedabad for 5 years.

She has published several research papers in National & International journals

Piyush Kumar GUPTA, Verification and Emulation Methodology and Tools

Manager, ST Microelectronics Pvt Ltd Noida.

kumar.gupta@st.com

Piyush Kumar GUPTA has B.Tech. Degree in Electronics and Communication from

reputed institute, Ram Manohar Lohia University Faizabad. He has around 15 years of

work experience, and currently leading Central Functional Verification and Emulation

Team to define and deploy new flow/tools in Verification and Emulation. Work closely with

global ST sites to effectively collaborate on various activities which involved many key research areas e.g.

Unified UVM Architecture for simulation and Emulation, UPF support on Emulation, Automated

Assertions generation, Graph based Test Generation etc.

His expertise is in Dynamic/Formal verification and Emulation R&D.

Sachish Dhar DWIVEDI, SDS Group, STMicroelectronics Pvt. Ltd.

Sachish Dhar DWIVEDI has more than 8 years of direct experience in Industry. He

has done Masters in Technology from Motilal Nehru National Institute of

Technology, Allahabad in 2004. He is mainly responsible for SOC/IP

Silicon Validation using Advanced Hardware Emulation

Techniques. His main areas of interest are to develop Emulation methodologies, Evaluation of new

tools/techniques and support to various emulation based activities.

ems (VLSICS) Vol.4, No.6, December 2013

25

systems/

biosis, M.Tech in Computer Science from IETE

from University of Delhi. His main area of Interest is Project Management,

Advanced Functional Verification Technologies and System Design and Verification especially UVM

is doing Research in

Advanced Verification Methods for Efficient Verification Management in Semiconductor Sector. Abhishek

Team to define and deploy new flow/tools in Verification and Emulation. Work closely with

global ST sites to effectively collaborate on various activities which involved many key research areas e.g.

PF support on Emulation, Automated

Techniques. His main areas of interest are to develop Emulation methodologies, Evaluation of new

