
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.11, No.1, February 2021

DOI: 10.5121/ijcsea.2021.11101 1

UNLIMITED LENGTH RANDOM PASSWORDS FOR

EXPONENTIALLY INCREASED SECURITY

Cheman Shaik

VISH Consulting Services Inc, 6242 N Hoyne Avenue, Chicago IL 60659, USA

ABSTRACT

Presented herein is a new method of exponentially strengthening user defined passwords against cracking.

The enhanced security is achieved by injecting random strings of random length at random positions in the

password string before encrypting and passing the ciphertext resulting after encryption over a network to

its destination. Discussed also in detail is how the randomly injected strings are separated and the original

password is extracted from the ciphertext. Also explained is how the method can be applied to any other

confidential information such as credit and debit card information and cryptocurrency data.

KEYWORDS

Padding, Random String Injection, Ciphertext, Delimiting String, Ciphertext Only Attack, Brute Force

Attack, Security Factor

1. INTRODUCTION

Password is the basic and first means to control access to a web application that hosts any
confidential data and resources. Passwords passed over a network in plain text are vulnerable to

eavesdropping, thereby leading to hacking of websites and theft of confidential information[1]. In

order to prevent this, passwords are encrypted or hashed before passing them over any network.

Fig. 1 below shows a login page wherein a web application user enters his username and

password.

Passwords can be encrypted using a public key of any asymmetric encryption algorithm such as

RSA, ECC. Today, most web applications mandate a minimum length of eight characters for

http://airccse.org/journal/ijcsea/current2021.html
https://doi.org/10.5121/ijcsea.2021.11101

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.11, No.1, February 2021

2

password when a user signs up, in order to guarantee minimum security against brute force
attacks[2]. Passwords too longer in size are difficult to remember and therefore can be forgotten.

However, when an eight-character password is encrypted as is, it is highly vulnerable to

ciphertext attacks and cracking would be very easy for attackers.

In ciphertext only attack, an attacker launches a brute force attack on the password trying all

possible combinations of an eight-character string. In order to defeat this kind of attacks,

password string is padded with random text to make it the size of the encrypting key to make the
attack difficult, because the attacker needs to expand his brute force attack over to the padding

string also which is multiple time larger than the original password.

Once the encrypted padded password reaches its destination, it is decrypted on server using the

private key, the padding string is removed and the original password is extracted for verification.

However, padding has its limitations as a password can be padded only up to the length of the

encrypting key, and padding beyond this length is of no use as it can be ignored in brute force
attacks[3].Fig.2 below shows how a password is padded before encrypting it.

In the above figure O1, O2, …, O8 are characters of the original user defined password. P1, P2,

…, Pn are random padding characters that are created by a typical public key encryption scheme

that we use today. The total padded password string is encrypted into a ciphertext with the public
key of the corresponding web application and submitted as soon as the user clicks the submit

button. On the server side, the web application decrypts the ciphertext and derives the padded

password string O1, O2, …, O8, P1, P2, …, Pn from which the padding string P1, P2, …, Pn is

removed to extract the original password.

2. RELATED WORK

In 1994, Bellare and Rogaway introduced Optimal Asymmetric Encryption Padding (OAEP)
scheme that results into a probabilistic encryption, meaning encryption of a plain text message

encrypted multiple times will result in to different ciphertexts, which defeats chosen pain text

attacks and chosen ciphertext attacks. In OAEP method, a random value R is hashed and the

result is xor-ed with the zero padded input message. The resulting value Sis hashed with another
function and the result is xor-ed with R to obtain T. Subsequently, S and T are concatenated and

the result is encrypted[4].

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.11, No.1, February 2021

3

In 2001, Dan Boneh proposed the SAEP (Simplified OAEP) padding scheme which allows to
drop off one round of OAEP without compromising security. In SEAP method, a random value R

is hashed and the result is xor-ed with input message padded with certain zero bits and the

resulting value S is concatenated with the random value R and crypted into a ciphertext [5].

In 2002, Bellareet al presented several security fixes to the SSH authenticated encryption

mechanism that defeat reaction attacks. Bellare suggested using random padding in CBC mode of

encryption.

In 2012, Liu Chengxia discussed a new padding method in DES encryption which solves the

ambiguity of padding zeros with the ending zeros of the actual message. Liu solves the problem
by specifying the length of padding zeros in the last eight bits of the 64 bit block [6].

Later in 2012, Gilles Bartheet al proposed the ZAEP (Zero-Redundancy Asymmetric Padding)

scheme that can defeat chosen ciphertext attacks [8]. ZAEP is surprisingly much simpler
compared to the OAEP[7].

In 2019, Prabavathiet al presented a Prime Padding Attribute based encryption to improve dataset
security for publicly centralized cloud systems [8].

All the above works focus on padding and different variations of padding. Padding is always
applied at the end of an original message. No evidences are found in literature teaching injecting

random strings of random length at random locations in the original message.

3. INTERMEDIARY INJECTION OF RANDOM STRINGS

Intermediary injection of random strings in a password at random positionsexponentially

increases security against brute force attacks. When random strings of random length are injected

in a password, original characters of the password are scattered all over the resulting password.
Further, the resulting password can occupy multiple blocks of the encrypting key size. As a

result, the attacker would not be in a position to ignore the remaining blocks of the ciphertext

following the first block.

4. DIFFERENTIATING PASSWORD AND RANDOM STRINGS

The original password characters and the random injected strings can be differentiated by

separating them with small delimiter strings of one or more characters specific to a particular
user. Every user can select a delimiter string of his choice at the time of registration with the web

application. The random injected string follows and is followed by the delimiter string of the

user. The entire string resulting from injection of random strings in the password is encrypted by

a public key and a ciphertext is generated which is passed over a network to its destination.

Fig. 3 below shows a registration form of a web application that implements unlimited length

random passwords. The registration form contains an additional field named Delimiting String
wherein the user enters one or more symbol characters from ~!@#$%^&* found on the second

row of buttons on a regular keyboard. A user has to remember this delimiter string along with his

username and password and enter it in the login form at the time of Sign In.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.11, No.1, February 2021

4

One condition that the software code of the login page needs to verify is that it should check for
occurrence of the delimiting string in the password that a user enters in the password box. The

software program should alert the user not to include his delimiter string in his password.

Fig. 4 below shows a login page implementing random string injection in password.

During login a user enters his username, password and the delimiter characters he defined at the

time of registration. Typically, a user could select two-character string “$@” as his delimiter

string. After entering these three values in the login form, the user clicks the submit button which
will trigger a client-side scripting function that injects a random string of random length pre- and

post-appended by the delimiter string at random positions in the password. Greater the length of

the random strings injected, greater the security achieved against cracking. The random strings
injected need not be the same size and in fact varying the length of random strings makes

password cracking much more difficult. Once the random string injection process is complete, the

randomized password string is encrypted with public key of the web application.

In an alternative approach to entering delimiter string in the login form, it can be fetched from the

server and stored in a hidden field of the form. In this case the user enters only his username and

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.11, No.1, February 2021

5

hits a Continue button on the login form which will submit the username to the web application,
receive the user’s delimiter string and store it ina hidden field of the form. At the same time, a

password box hidden in the form is made visible. All this task can be performed in background

without any page refresh, through an AJAX call. Once the user enters his password and clicks

submit button, the delimiter string is picked by a client-side scripting function and random string
injection is performed.

Fig. 5 below shows how random strings are injected in an original password before encryption.

In the above figure O1, O2, …, O8 are characters of the original user defined password whereas

D1 and D2 are characters of the delimiter string that the user entered in the third input field of

Fig. 3. R1, R2, …, Rn are characters of the random string injected in the password. Multiple
distinct sets of random characters are injected in the password as shown in the figure. These set

are random in nature where as D1 and D2 are always fixed for a given user.

When ciphertext ofthe random injected password reaches its destination server, the web

application decrypts it with the corresponding private key. Subsequently, the random injected

strings are identified by spotting the delimiter strings D1D2 and removed to extract the original
password.

Fig. 6 below shows how random injected strings are identified and removed from the decrypted

password.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.11, No.1, February 2021

6

As shown in the above figure, the web application decrypts the ciphertext it receivedfrom the
user, identifies the delimiter strings in the resulting plain text and removes them including the

random string between them. The delimiter string for that particular user is retrieved from the

user repository based on the username.

5. SECURITY AGAINST CIPHERTEXT ONLY ATTACKS (COA)

In a COA attack an attacker tries to discover the original plain text for the available ciphertext.

Usually, hackers who have gained access to network traffic at intermediary routers on the Internet
resort to such attacks. The attack is launched on public key encrypted ciphertexts. In this attack

an attacker tries to encrypt each possible plain text and encrypt itwith the public key and compare

the resulting ciphertext with the available ciphertext, and the plain text is discovered whenever a

match occurs. It is a kind of brute force attack on the plain text which is typically a password.

Random string injected passwords make their encryption exponentially stronger against COA

attacks compared to the original password encryptions. The plain text combinations to be covered
by an attacker in COA attacks will raise exponentially due to the insertion of random strings in

the middle.

6. SECURITY FACTORS OF RANDOM INJECTED PASSWORDS

Arandom string injected password ciphertext received on a web server contains multiple blocks

of the encrypting key size. The actual length of the password ciphertext received depends upon

the size of random strings injected in the password before encryption. Larger the size of the total
injected string, larger the size of password ciphertext. For example, a 1024character random

string injected in a password provides security equivalent to that of an8192 bit public key

encryption which is roughly four times the current NIST standard for RSA encryption. Today,
achieving security of this level in real time is hardly possible with the existing computer

processors. The current industry standard for public key encryption is 2048bit RSA key.

When a 40-character random string is injected after every character of an eight character
password, total number of characters in the complete plain string before encryption would be

8(40+2+1) which is equal to 344. When converted to a binary number itis 2752 bits longas each

ASCII character requires eight bits in binary representation. Therefore, the attacker needs to try
as many as 22752 total number of combinations.

On the other hand, when a padded password without any random strings injected is encrypted
with a 2048 RSA key, the ciphertext generated would be 2048 bits long and it would require the

attacker to try 22048 combinations, including padding, to crack the password.

security factor = 22752 – 22048 = 2704= (100.301)704= 10212

The above security factor indicates that encryption of a password with a 40-character random

string injection with 2048-bit RSA key is 1x10212time stronger compared to simple padded
password encryptions with the same size key.

The following table provides hardness factors of cracking an eight-character password encrypted

with 2048 bit key wherein random strings are injected before encryption. Hardness factors are
tabulated for injected strings of different sizes.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.11, No.1, February 2021

7

Table. 1 Security Factors of an eight-character password with random string injection

Security Factors for different random string sizesand single character

delimiter string with2048-bit RSA Key

Random String Size
(in chars)

Security Factor Computation Security Factor
(Simplified)

40 1x100.301*[8*8*(40+2+1) – 2048] 1x10212

45 1x100.301*[8*8*(45+2+1) – 2048] 1x10308

50 1x100.301*[8*8*(50+2+1) – 2048] 1x10405

55 1x100.301*[8*8*(55+2+1) – 2048] 1x10501

60 1x100.301*[8*8*(60+2+1) – 2048] 1x10597

Security factors tabulated above are exponential figures and therefore guarantee enormous

security to passwords. The security factor 1x10212against 40 in the table implies that if it takesone
day to crack apadded password using a super computer, it would take 1x10212years to crack the

same password on the same super computer if injected with random strings of 40 characters

before encryption.

The above security factors are computed for a single character delimiter string. The length of

delimiter string may vary user to user which, if considered, would result in even higher security

factors. Another assumption made in the computations is that size of random string injected after
each character of the password is constant, which need not be true in a real implementation.

When the injected random string size variesin the implementing program, it would make the

attack much more difficult.

7. CONDITIONS TO CHECK IN IMPLEMENTATION

The software implementation program needs to check the certain condition while injecting

random string in password in order to make it strong and fail proof. Following are some of the
condition to verify:

 Do not include delimiter string in password

 this will avoid misidentification of delimiter string during removal of random strings.

 Do not include delimiter string in random string
this will ensure complete removal of random strings injected which would otherwise may

leave part of the random string

 Adjust the length of the last block password resulting after random string injection to key

size
this will make sure the last block of ciphertext is not vulnerable to easy cracking due to a

short length of its plain text

8. APPLICABILITY TO CARDS AND CRYPTOCURRENCY DATA

Random strings can be injected in other secret data such as credit and debit card details, social

security numbers and cryptocurrency details. Today, credit and debit card numbers are sixteen

digits long. Inserting random strings after each digit of these numbers will exponentially
increases security against brute force attacks.

Credit and debit cards details and cryptocurrency data are not hashed on client side as they are

stored encrypted on server side and hence random string injection method may be applied
directly on such data.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.11, No.1, February 2021

8

9. RANDOM INJECTING STRINGS IN PASSWORD HASH

Nowadays most servers store passwords in hash form in order to avoid theft by internal trust

breaching elements.While a hash is irreversible it is also vulnerable to brute force attacks. The

concept ofencrypting secret data after injecting random strings can be added as an additional
wrapper over hashing.

Once a hash of secret data is computed on client side, random strings can be inserted in the hash
and further encrypted. The ciphertext of the hash generated after encryption can be passed over to

the web application. The web application on server side can decrypt the ciphertext to produce the

random string injected hash from which random strings can be removed to obtain the original

hash.

10. APPLICABILITY TO SYMMETRIC, ASYMMETRIC AND HYBRID

ENCRYPTIONS

Random string injection concept works well with both symmetric encryption schemes such as
AES and asymmetric encryption schemes such as RSA and ECC. These schemes complement

each another to make encryption more efficient and faster. In a hybrid scheme wherein both the

schemes are used, a private key of a symmetric encryption scheme is generated, encrypted by a

public key of asymmetric key and passed to the client. All subsequent communication is
encrypted with the shared symmetric key for the entire session.

In case the sever passes an encrypted symmetric key to its client, it needs to send the delimiter
string used in random string injection as an additional parameter with the ciphertext. The client’s

software program can identify the random strings and remove them to extract the original

symmetric key.

11. PRACTICAL IMPLEMENTATION

Random string injection in pain text before encryption may be implemented as part of the

standard protocols such as the Transport Layer Security (TLS) or any encryption schemes such as
RSA, ECC and AES. These implementations may use the same delimiter string irrespective of

users. Alternatively, it can also be implemented by web applications that provide a login page for

users. A separate delimiter string may be defined per user at the time of registration and asking
the user to enter hist delimiter string in the login form. Random string injection may be

implemented in the login page using a browser side scripting language such as JavaScript which

will execute before the form is submitted for TLS encryption.

12. CONCLUSION

Passwords are shorter in size compared the standard size of blocks used by block cipher

encryption schemes. Strong encryption of passwords is mandatory to defeat password stealing by
hackers. Passwords encrypted as is are vulnerable to simple brute force attacks. Padding

passwords at the end is a conventional approach adopted by all most all encryption schemes.

Raising above the convention of padding passwords for security, a new method of exponentially

fortifying the security of passwords against brute force attacks is proposed in this paper. The

proposed method injects random strings of random length at random positions in the password

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.11, No.1, February 2021

9

before encryption. A delimiter string is concatenated before and after the random strings injected
in order to identify them at the destination end. The random strings injected are identified by the

delimiter string and removed to obtain the original passwords string after decryption.

Random string injected passwords offer exponential security against brute force attacks and
ciphertext attacks as the attacker needs to sift through a very wide space of strings. Security

factors achieved on implementing the proposed method are reported. Also discussed is the

applicability of the method to other secret information such as credit and debit card details, social
security numbers and cryptocurrency data wallet passwords and seed phrases.Further, explained

as to how the method can be applied to password hash in order to make the hash more secured

against brute force attacks.

A future work recommendation is that the random string injection scheme may be developed as

an easily pluggable module of code both for browser side injection of random strings and server-

side removal of the injected string. Another recommendation is that the teams working with the
TLS protocol enhance it to include random string injection on client side and its removal on

server side.

REFERENCES

[1] Kimberly Rallo, “Clear Text Password Risk Assessment Documentation”,

https://www.sans.org/reading-room/whitepapers/authentication/clear-text-password-risk-assessment-

documentation-113

[2] University of Cincinnatiweb page, “How to Choose a Password”,
https://www.uc.edu/infosec/password/choosepassword.html

[3] Townsend Security Data Privacy Blog, "How Much Data Can YouEncrypty With RSA Keys?",

https://info.townsendsecurity.com/bid/29195/how-much-data-can-you-encrypt-with-rsa-keys

[4] M. Bellare, P. Rogaway. Optimal Asymmetric Encryption -- How to encrypt with RSA. Extended

abstract in Advances in Cryptology - Eurocrypt '94 Proceedings, Lecture Notes in Computer Science

Vol. 950, A. De Santis ed, Springer-Verlag, 1995

[5] Dan Boneh, “Simplified OAEP for the RSA and Rabin Functions”, Advances in Cryptology –

CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 275–291. Springer, 2001

[6] Liu Chengxia , “Discussion of New Padding Method in DES Encryption”, Journal of Software

Engineering and Applications, 2012, 5, 20-22

[7] Gilles Barthe , David Pointcheval , Santiago ZanellaBéguelin “Verified Security of Redundancy-Free
Encryption from Rabin and RSA”, proceedings of the 19th ACM Conference on Computer and

Communications Security, CCS 2012. ACM Press, 2012

[8] D.Prabavathi and Dr. M. Prabakaran,

“AnImprovingCloudDataSecurityStandardUsingPrimePaddingAttributeBasedEncryptionWithSupport

iveServiceLevelDynamicAuditing inCloudEnvironment”, International Journal of Scientific Research

and Review - Volume 8, Issue 4, 2019

Author

Cheman Shaik is a Research & Development professional in Computer Science and

Information Technology for the last twenty years. He has been an inventor in these

areas of technology with eight U.S Patents for his inventions in Cryptography,

Password Security, Codeless Dynamic Websites, Text Generation in Foreign
Languages, Anti-phishing Techniques and 3D Mouse for Computers. He is the pioneer

of the Absolute Public Key Cryptography in 1999. He is well known for his Password

Self Encryption Method which has earned him three U.S Patents. He has published

research papers in IJCSEA and the proceedings of EC2ND 2006 and CSC 2008.

