
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No.1/2/3, June 2019

DOI :10.5121/ijcsea.2019.9301 1

AN OPTIMIZED DISK SCHEDULING ALGORITHM

WITH BAD-SECTOR MANAGEMENT

Amar Ranjan Dash1, Sandipta Kumar Sahu2 and B Kewal3

1Department of Computer Science, Berhampur University, Berhampur, India

2Department of Computer Science, NIST, Berhampur, India
3Department of Computer Science, Berhampur University, Berhampur, India

ABSTRACT

In high performance computing, researchers try to optimize the CPU Scheduling algorithms, for faster and

efficient working of computers. But a process needs both CPU bound and I/O bound for completion of its

execution. With modernization of computers the speed of processor, hard-disk, and I/O devices increases

gradually. Still the data access speed of hard-disk is much less than the speed of the processor. So when

processor receives a data from secondary memory it executes immediately and again it have to wait for

receiving another data. So the slowness of the hard-disk becomes a bottleneck in the performance of

processor. Researchers try to develop and optimize the traditional disk scheduling algorithms for faster

data transfer to and from secondary data storage devices. In this paper we try to evolve an optimized

scheduling algorithm by reducing the seek time, the rotational latency, and the data transfer time in

runtime. This algorithm has the feature to manage the bad-sectors of the hard-disk. It also attempts to

reduce power consumption and heat reduction by minimizing bad sector reading time.

KEYWORDS

Algorithm Optimization, Bad-Sector, Disk Scheduling, Multi-Platter Hard-disk, Operating System.

1. INTRODUCTION

In the era of high performance computing, most attention is on improving the capacity of

computers by increasing their working speed. For that purpose, researchers try to optimize the

performance measure of the traditional CPU scheduling algorithms [1], [2], [3] by reducing the

average waiting time and turnaround time. Amar, Sandipta, and Sanjay [4] have developed an

optimized CPU scheduling algorithm “DABRR” by introducing a concept of dynamic time

quantum, made up by finding the mean of burst time of all process. In further study Amar et al.

[5] selected specific priority features and proposed new scheduling algorithm “CSPDABRR”.

This algorithm made up of both round-robin and priority CPU scheduling algorithm. This

algorithm execute the processes based on their priority and with that it also provides lesser

average waiting time and average turnaround time then all pre-existing CPU scheduling

algorithms. After arrival of multi core processor, the speed of processing becomes much faster

with multi-threading technology. With evolution of computer, gradually the speed processor

increases much more than the speed of hard-disk. All process needs both CPU time and I/O time

for completion of its execution. For I/O operations, a process requests the operating system to

access the disk to store or retrieve data. In multi-processing environment many processes are

generated which in turn may generate multiple memory request, either to read some data from or

to write some information to secondary storage device. So even with faster CPU processing it

have to wait longer for retrieving data from secondary memory. So the slowness of the hard-disk

becomes a bottleneck in performance of processor. That is why for controlling and providing the

access to memory for all the processes operating system uses the concept of disk scheduling.

Scheduling is a basic task of an operating system to schedule all computer resources before their

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

2

use. To serve the read or write requests of multiple processes a disk should be efficient enough to

give services to all processes and this can be achieved by various traditional disk scheduling

algorithms [1], [2], [3]. Traditional disk scheduling algorithms are FCFS, SSTF, SCAN, C-

SCAN, LOOK, and C-LOOK.

Track and sectors are basic conceptual parts based on which the disk scheduling algorithms serves

all memory requests. Tracks are a set of concentric circular path on the surface of a disk or platter

on which the data is retrieved or written on. On a track the data bits are stored in the form of

magnetized bit pattern. Each track is further sub-divided into a number of partitions known as

sectors. A sector stores a fixed amount of user accessible data.

The performance of a disk scheduling algorithm is measured in terms of it seek time, rotational

latency and bandwidth. Seek time is the amount of time taken by the read/write head of a disk to

move to a particular track where the information is present. Rotational latency is the amount of

time taken by the read/write head of a hard disk to get to a specified sector in a track, by rotation

of platter. It depends on the rotating speed of the disk. Data Transfer time is the summation of

time required for selection of a read/write head and the time required to transfer the data. and

number of bytes to be transferred. Bandwidth is the rate at which data is read from or written on

hard disk. The main objective of scheduling algorithm is to process all memory request with

lesser seek time and rotational latency. C. Mallikarjuna and P. Chitti Babu [6] have done a

comparative analysis of all traditional disk scheduling algorithms based on their performance

measure. Sukanya [7] have developed a simulation tool in C# to represent the working procedure

of all disk scheduling algorithms with their statistics

As per the complexity the least complex algorithm is FCFS. As it is the simplest algorithm

without any overload. But it requires more seek time other disk scheduling algorithm. Manish [8]

proposed new disk scheduling algorithm IFCFS. This algorithm first completes all memory

request in the path from initial head position to first memory request, then travel in reverse

direction. But this algorithm fails in providing optimized seek time when the first memory request

is not present either in starting or finishing end. Margo, Peter, John [9] proposed GSTF (Grouped

Shortest Time First) and WSTF (Weighted Shortest Time First) disk scheduling mechanism to

improve the performance of disk scheduling algorithm. In disk scheduling the main performance

measure is seek time, rotational latency, and data transfer time. The LOOK algorithm provides

the least seek time, among all traditional disk scheduling algorithms. So most of the researchers

try to optimize the LOOK disk scheduling algorithm by reducing the seek time. Saman and Ritika

[10] have proposed an algorithm, which calculates the difference between the highest request

value and the lowest request value and then compares it with the current head position and then

implements LOOK algorithm to service the requests. Sourav et al. in [11] and Sandipon et al. in

[12] developed two similar disk scheduling algorithms.

These algorithms arrange the requests in ascending order and then calculates the left distance

from current head position and then calculates the right distance from current head position and

then decides the direction of head movement and implements LOOK algorithm to service the

requests. Mahesh and Renuka [13] have developed a new disk scheduling algorithm “Sort Mid

Current Comparison” (SMCC), to reduce the seek time. This algorithm arranges the requests in

ascending order and then calculates the mid-point, then compares the mid-point with the current

head position and decides the movement of head from initial head position and implements

LOOK to service the requests. Jainil and Yash [14] have proposed a “Median Range Disk

Scheduling Algorithm”. This algorithm arranges the requests in ascending order and then finds

the median range. After this it compares the current head position with the median range value.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

3

If the head is between the median range, then SSTF algorithm is applied to service the requests or

else LOOK algorithm is implemented.

Some of the researchers also try to reduce the rotational latency to optimize the disk scheduling

algorithm. Priya and Supriya [15] have developed an algorithm to reduce the rotational latency of

disk scheduling algorithm by appending the fuzzy logic. Kitae and Heonshik [16] have proposed

two disk scheduling algorithms SRLF and SATF for decreasing the rotational latency and access

time respectively. Karishma et al. [17] have developed a new disk scheduling algorithm

“OTHDSA” (Optimized Two Headed Disk Scheduling Algorithm). This algorithm works on the

hard-disk with two read/write heads for each side of platter. It works on the movement of Left and

Right head, after measuring their distance from the position of memory request with lowest track

and the position and memory request with high track respectively. Similarly, Avneesh, Abhijeet,

and Abhishek [18] have developed another disk scheduling algorithm which will only work for

hard disk which contains 3 head for each side of platter. Alexander [19] has performed a

qualitative survey on all available disk scheduling algorithms, with a comparative analysis of STF

& SPTF with all traditional scheduling algorithms.

Researchers try to analyse the amount of energy consumed and the amount of heat generated

within hard disk. Anthony et al. [20] have analyzed the electrical energy consumed with in hard

disk based on type of hardware and type of memory access. They also analyzed the energy

consumed based on the position and size of data-chunk on hard disk. Wentao [21] have analyzed

the energy consumed within hard disk and solid state drive. With complete analysis he states that

energy consumed per accessing one bit is approximately 100 fj in hard disk and 0.35 fj in solid

state drive.

All researchers just try to optimize the seek time and rotational latency based on current head

position and memory request position based on Track and Sector. But no one considers platter

and cylinder number for the optimization. They have also not proposed any algorithm for bad

sector detection and management. The rest of the paper is structured as follows: in Section 2, we

briefly discuss the traditional disk scheduling algorithms. In Section 3, we elaborate the proposed

disk scheduling algorithm. In section 4 we made a comparative analysis of our algorithm with all

traditional algorithms. Finally, in Section 5, we provide the concluding remarks and aspect of

more improvement in future work.

2. TRADITIONAL ALGORITHMS

Due to the volatile nature of the CPU register, Cache, and Main Memory, the use of secondary

storage devices such as Hard Disk came into existence. Hard disk is a secondary storage device

which stores data on circular disks known as platters. All hardware technologies are evolving

gradually to fulfil the requirement of high performance computing which is the basic need of

modern computing. Still the speed of processor is much faster than the speed of hard-disk. To

serve the read or write requests of multiple processes a disk should be efficient and fast.

All computer resources need to be scheduled, before use, for proper and faster utilization of them.

This is basic work of the scheduling algorithms of operating system. In multi-processing

environment many processes are generated which in turn generate many read or write request to

store or retrieve data on a secondary storage device. But hard-disk can serve one memory request

at a time. So all memory requests are stored in a queue. Two consecutive memory request may be

far from each other (based on tracks), which so can result in greater disk arm movement. Hard

drives are one of the slowest parts of computer system and thus need to be accessed in an efficient

manner to match the speed of requests. To solve/manage above situation we need disk scheduling

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

4

algorithm of operating system. The main objective of the disk scheduling algorithm is to provide

the best seek time. The main goal of a disk scheduling algorithm is to reduce the starvation

problem among the requests, to provide high throughput and to minimize the total amount of head

movement. The performance of a hard disk can be enhanced by using various scheduling

algorithm to give better seek time.

FCFS is the simplest of all disk scheduling algorithms. This algorithm uses first come first serve

method which means the request which arrives first in the disk queue is serviced first. The main

problem with this algorithm is that the head has to take large swings if the requests are far from

each other which increases the seek time. In SSTF (shortest seek time first) the requests having

the less seek time from the current head position is serviced first. In this algorithm the seek time

of all requests are calculated in advance and are arranged in terms of their seek time in the disk

queue. This algorithm causes starvation problem and an overhead is required to calculate the seek

time.

SCAN algorithm also known as elevator algorithm. This algorithm starts the disk arm at one end

of the disk and goes to till the other end servicing all the requests in between. After this the

direction is reversed and the servicing continues in the reverse journey of the disk arm. The main

disadvantage with this algorithm is that the requests have to wait long enough to be serviced and

there is a lot of unnecessary head movement since the disk arm has to move till the ends even if

there are no requests to be serviced. C-SCAN is known as circular scan. It is a modified version

of scan. In this algorithm the disk arm starts from one end of a disk and moves to the other end

servicing requests in between and then returns back from where it started without servicing any

request and then the process continues. The main disadvantage with this algorithm is that it takes

more head movement to service requests than SCAN.

LOOK algorithm services the requests in the same manner as that of SCAN but the difference is

that instead of going till the end track (either higher or lower) it goes to the request which is

nearest to the end track (either higher or lower). The main disadvantage is that we need to keep

finding the nearest request in case of mass loading. C-LOOK is known as circular LOOK. This

algorithm combines the features of C-SCAN and LOOK algorithm. In this algorithm the disk arm

starts from its position and moves to a memory request nearer to one end of hand- disk, servicing

requests in between. Then returns back from there to the memory request nearer to other end and

then the process continues.

At present the platters of hard-disk are made up of aluminium, to make the hard-disk as light

weight as possible. While manufacturing the both side platters are coated with a vacuum

deposition process called magnetron sputtering of magnetic substances, over which a thin film of

dust carbon power is over coated by sputtering process. So a nanometre thin layer of polymeric

lubricant layer gets deposited on the top of surface of platter by doping all platters into lubricant

solvent solution. Then the disk is buffered by various process to eliminate small defects by typical

sensor detection techniques, radially a bad sector or bit pattern is repaired by defuse dusting of

carbon compounds. The surface of typical hard disks was coated with diamagnetic oxide or

paramagnetic material. The surface of platters is buffered to ensure the error correction purposes

which can store a billion bits per square inches.

The Platters must have to kept dust free during development of hard-disk. To eliminate internal

contamination from dust, air pressure is equalized by vacuum filters and platters are hermetically

placed in the disk case by a partial vacuum field with reading writing head in prior position, this

is called Hard Disk Assembly. Traditionally, the read/write heads use infrared and blue ray

technology for reading the data stored in magnetic bit pattern. But recently companies use LED

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

5

with laser for that same purpose. Self-monitoring, Analysis and Reporting Technology

(S.M.A.R.T) is the common technology used by all hard drives as in Serial DATA or Parallel

DATA drives for analysis and error detection. ECC (error correction code), (LDPC) Low Density

Parity Checking Code are used till now as error correction code by Modern TOSIBHA, SEGATE,

SAMSUNG Drives of from capacity of 120 GB.

3. OUR PROPOSAL

Disk scheduling algorithm is the specific task of operating system to serve all memory requests

with as less time as possible. Hard disks typically have a number of platters of same radius

mounted on a spindle. A platter can store information on both sides. Each platter of a hard disk is

divided into concentric circles known as ‘Tracks’. Track is a circular path on the surface of a disk

or platter on which the data is stored. On a track the data bits are stored in the form of magnetized

bit pattern. The number of tracks on the single surface of a drive is exactly equal to the number of

cylinders of the drive. Each track on a platter is sub-divided into number of virtual parts known as

sectors. Each sector holds a fixed amount of data. Traditionally a sector holds 512 bytes for a hard

disk. Platter, Track and sectors are basic parts based on which the disk scheduling algorithms

serves all memory requests. Disk queue is a queue in which all the I/O requests which are to be

serviced are stored.

Figure 1: Top and Side View of Hard-disk

The performance of a disk scheduling algorithm is measured in terms of it disk access time which

again depends upon seek time, rotational latency and bandwidth. Seek time is the amount of time

taken by the read/write head of a disk to move to a desired track where the recent memory request

is present. After reaching a particular track the read/write head have to wait, till it reaches a

particular sector by rotation of platter, to serve a request. Rotational latency is the amount of time

taken by the read/write head of a hard disk to get to a specified sector in a track. It is also known

as rotational delay. Bandwidth is the rate at which data is read from or written on hard disk.

Transfer time is the time to transfer the data. Disk access time is the sum of the seek time,

rotational latency and transfer time. Similarly, the Disk response time is the combination of disk

access time and disk querying time. The main objective of disk scheduling algorithm is to process

all memory requests with lesser Disk Access Time. Figure 1 Represents the top and side view of

Hard disk.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

6

All Traditional algorithms only try to minimize the seek time during the process of servicing the

memory requests. In all referred papers, researchers try to reduce the seek time and rotational

latency for optimizing the disk scheduling algorithm. Those algorithms are perfectly applicable

for hard-disk with single platter. But in reality, all hard disks are made up of multiple platters.

We consider Platter, Track, Cylinder, and Sector number as primary input for memory request.

Table 1 show the proposed structure of disk queue for our algorithm. This disk queue is made up

of Linked-List. In this algorithm we proposed a mechanism to detect and manage the bad sectors

of a hard disk, by creation and maintenance of an additional Linked List termed as “Bad Sector

List”, as shown in Table 2.

Table1: Structure of Disk Queue

Platter Track Sector Index R/W BSI

Table 2: Structure of Bad Sector List

Index BSI Temp/Permanent Prescribed Bit Finalised

3.1 Proposed Algorithm

Here we proposed a new optimized disk scheduling algorithm named as MODSSM (Modern

Optimized Disk Scheduling with Bad-Sector Management).

MODSBSM:

IHP: Initial Head Position

IHPt: Track of Initial Head Position

IHPp: Platter of Initial Head Position

IHPs: Sector of Initial Head Position

CHP: Current Head Position

CHPt: Track of Current Head Position

CHPp: Platter of Current Head Position

CHPs: Sector of Current Head Position

LD: Left Distance

RD: Right Distance

Nr: Number of memory request

NP: Number of Platter

BSQL: Bad Sector Queue List

TSKT: Total Seek Time

TRL: Total Rotational Latency

TDTT: Total Data Transfer Time

TDAT: Total Disk Access Time

i1, i2: Different Indexes

BSI: Bad Sector Index

Index: a number which holds platter, track, and sector details of a memory block within hard-disk

BSM(): A function for management of detected bad sector

Step 1: Insert all memory request in partition list of hard disk.

Step 2: TSKT = 0

Step 3: TRL = 0
Step 4: TDTT = 0

Step 5: Rearrange the partition list, in ascending order of Track,

Step 6: IHP: initial disk head position
Step 7: LD = (IHPt – track value of first node of partition table)

Step 8: RD = (track value of last node of partition table– IHPt)

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

7

Step 9: //Decide the direction of head movement from IHP

Step 10: If (LD < RD)

Step 11: Rearrange the partition list,

Step 12: within each track, arrange the sectors in ascending order.

Step 13: Then within each sector, arrange the platters in ascending order.
Step 14: i1 = 0

Step 15: SKT = SKT+ LD

Step 16: //For track-wise traversing of the partition list
Step 17: Repeat Step 18 to 56 till (i1 < Nr)

Step 18: Move the Head to the track section of i1 node

Step 19: i2=i1
Step 20: //Complete all memory request from different platters & sectors belongs to the i2 cylinder

Step 21: Repeat Step 22 to 51 till (Track of i2 == Track of i1)

Step 22: If (r/w head is unable to read a bit)
Step 23: //bad sector means unreadable and non-writable

Step 24: If (BSI == 2)

Step 25: BSM(index);
Step 26: Else If (BSI == 0)

Step 27: BSI++

Step 28: Delete the block, from that position of the partition list & add at end of the partition list
Step 29: Else

Step 30: BSI++

Step 31: Send the node to the Bad-Sector Table
Step 32: Else

Step 33: If(i2==0)

Step 34: If (IHPs == sector of i2)
Step 35: TRL = TRL + 0

Step 36: Else If (sector of i2 > IHPs)

Step 37: TRL = TRL + (sector of i2-IHPs)
Step 38: Else

Step 39: TRL =TRL + (7-IHPs+1+sector of i2)

Step 40: TDTT = TDTT + (Absolute (Platter of i2-Platter of IHPp))
Step 41: Complete the Memory request of i2 node

Step 42: Else

Step 43: If (sector of (i2-1) == sector of i2)
Step 44: TRL = TRL + 0

Step 45: Else If (sector of i2 > sector of (i2-1))

Step 46: TRL = TRL + (sector of i2-sector of (i2-1))
Step 47: Else

Step 48: TRL =TRL + (7-sector of (i2-1) +1+sector of i2)

Step 49: TDTT = TDTT + (Absolute (Platter of i2-Platter of (i2-1)))
Step 50: Complete the Memory request of i2 node

Step 51: i2++

Step 52: if (i2 < Nr)
Step 53: SKT = SKT + (Track of i2 – Track of i1)

Step 54: i1=i2

Step 55: else
Step 56: goto step 109

Step 57: Else If (RD < LD)
Step 58: Rearrange the partition list,

Step 59: within each track, arrange the sectors in descending order.

Step 60: Then within each sector, arrange the platters in descending order.
Step 61: i1 = Nr-1

Step 62: SKT = SKT+ RD

Step 63: //For track-wise traversing of the partition list
Step 64: Repeat Step 65 to 103 till (i1 >= 0)

Step 65: Move the Head to the track section of i1 node

Step 66: i2=i1
Step 67: //Complete all memory request from different platters & sectors belongs to the track (or cylinder) of i1

Step 68: Repeat Step 69 to 98 till (Track of i2 == Track of i1)

Step 69: If (r/w head is unable to read a bit)
Step 70: //bad sector means unreadable and non-writable

Step 71: If (BSI == 2)

Step 72: BSM(index);
Step 73: Else If (BSI == 0)

Step 74: BSI++

Step 75: Delete the block, from that position of the partition list & add at end of the partition list
Step 76: Else

Step 77: BSI++

Step 78: Send the node to the Bad-Sector Table

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

8

Step 79: Else

Step 80: If(i2==Nr-1)

Step 81: If (IHPs == sector of i2)
Step 82: TRL = TRL + 0

Step 83: Else If (sector of i2 > IHPs)

Step 84: TRL = TRL + (sector of i2-IHPs)
Step 85: Else

Step 86: TRL =TRL + (7-IHPs+1+sector of i2)

Step 87: TDTT = TDTT + (Absolute (Platter of i2-Platter of IHPp))
Step 88: Complete the Memory request of i2 node

Step 89: Else

Step 90: If (sector of (i2+1) == sector of i2)
Step 91: TRL = TRL + 0

Step 92: Else If (sector of i2 > sector of (i2+1))

Step 93: TRL = TRL + (sector of i2-sector of (i2+1))
Step 94: Else

Step 95: TRL =TRL + (7-sector of (i2+1) +1+sector of i2)

Step 96: TDTT = TDTT + (Absolute (Platter of i2-Platter of (i2+1)))
Step 97: Complete the Memory request of i2 node

Step 98: i2—

Step 99: if (i2 >= 0)
Step 100: SKT = SKT + (Track of i1 – Track of i2)

Step 101: i1=i2

Step 102: else
Step 103: goto step 109

Step 104: Else

Step 105: If (Head is recently moving from Higher Track to Lower Track)
Step 106: goto Step 11

Step 107: Else

Step 108: goto Step 58
Step 109: If (partition list is not empty)

Step 110: Goto Step 5

Step 111: Else
Step 112: TDAT = TSKT + TRL + TDTT

Step 113: End of algorithm

BSM(Index):

Finalized: a column of Bad Sector list table to check whether any value is finalized for that particular bad sector

Step 1: if (finalized ==1)

Step 2: Perform memory operation

Step 3: Else
Step 4: If (Prescribed Bit is applicable)

Step 5: Perform memory operation

Step 6: Else
Step 7: Change the preferred-bit

Step 8: Perform memory operation

3.2 Illustration

In this section we have analyzed the execution of the proposed algorithm. All memory request

generated by the processes are stored in disk queue. The Disk queue is made up of Double-

Linked-List. Here all records of disk queue, as shown in Table 1, are individual nodes of disk

queue list. All nodes have eight sections. Six middle section for holding information of six

columns. The first and last section of all nodes used to store the address of its previous and next

node, for link. First all memory request nodes are arranged based on track.

Then check whether the initial position of the r/w head is nearer to track of first node of disk

queue list or nearer to track of last node of disk queue list. If the initial position of r/w head is

nearer to the first node of disk queue list, first arrange the sectors (with similar tracks) in

ascending order, then with in each tack-sector combination arrange the platters in ascending

order, then finally serve all memory requests from first to last node of disk queue list. Or if the

initial position of r/w head is nearer to the last node of disk queue list, first arrange the sectors

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

9

(with similar tracks) in descending order, then with in each tack-sector combination arrange the

platters in descending order, then finally serve all memory requests from last to first node of disk

queue list. Figure 2 represents the internal structure of a hard-disk.

Seek-time, Rotational-Latency, and data transfer time decide the disk access time, which is the

basic performance measure of Disk scheduling algorithm. Seek-time depends on the speed of

head movement. Rotational Latency depends on the revolution speed of platter. Similarly, the

data transfer time depends on the disk bandwidth of the hard-disk. Out of these three the slowest

one is the movement of r/w head. So most stress have been given to reduce the seek time. So once

the head reach to a particular track, the algorithm completes all memory requests from that

cylinder, irrespective of different platter or sector.

All Platters are connected through spindle. Similarly, all r/w heads are connected to a single

actuator arm. So all r/w heads are move together simultaneously and remain at same track

number, irrespective of any platter. In other words, all r/w heads are present in single cylinder.

Once r/w head reach a particular track, at first it read all memory request present in different

platters of same sector. After that it performs all memory request present in different platters of

next sector. Similar process continuous till the algorithm processed all memory request of same

cylinder, till the last platter.

Figure 2: Internal structure of hard-disk

During the process of accessing data, if concerned bit is accessible, then normal memory

operation occurs. But if it is not accessible, then that bit is called as bad sector. In that case the

proposed algorithm increases the bad sector index by 1. Then the proposed algorithm removes the

respective row from the disk queue and add it at the rear end of the disk queue. If one bit detected

twice as bad sector, then that bit’s information is transferred to bad sector table. Hard disk stores

all information in binary bit format. In bad sector table there is a column which stored a

preferable bit for each bad sector. At first the preferable bit of all bad sectors is considered as

‘zero’. During execution of a bad sector, for the first time, algorithm check if the concerned

memory request gets the perfect output by considering the preferred it as “Zero”. If its output is

perfect, then the finalized column of that index become one and after that for all read operation

regarding that index, the algorithm processed the memory operation by considering the preferred

bit as “zero”. If its output is not perfect, then the algorithm converts the finalized column of that

index into one, after inversing the preferred it cell of that memory index. After that for all read

operation regarding that memory index, the algorithm processed the memory operation by

considering the preferred bit as one.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

10

4. COMPARATIVE ANALYSIS

4.1 Assumption

First we divide the problems into two types based on number of platter present in concerned hard-

disk (hard-disk with single platter and hard-disk with multi platter). We further divide each into 3

more types based on the track number of memory requests (in ascending order, descending order,

& random order). We analyzed all disk algorithms based on six situations. In each we have

considered twenty independent memory requests with their particular memory request index.

Corresponding Platter, Track, and Sector number of all memory requests are known before

execution. The time required for sorting of memory requests assumed as zero. In each case all

memory requests are processed by 6 traditional (FCFS, SSTF, SCAN, C-SCAN, LOOK, C-

LOOK), 5 derived (ODSA, HDSA, RP-10, SMCC, MRSA) and proposed (MODSBSM) disk

scheduling algorithm. Unlike others Saman Rasool has not given any specific name to his

proposed disk scheduling algorithm. So we represent that algorithm as RP-10, as we referred that

paper in 10th position in reference list. Seek Time is calculated by finding out the head movement.

Rotational Latency is found by measuring amount of rotation needed. Data Transfer time is

calculated by adding the time required for selection of particular read/write head and the time

required for data transfer (assumed as one). Disk Access Time is the summation of Seek Time,

Rotational Latency, and Data Transfer Time. At first booting of a operating system the BSI of all

memory index is assumed as 0.

4.2 Case-1

Here we considered a situation with all memory request in ascending order in Single Platter Hard-

disk. Figure 3 represents the memory request of Case-1. Initially the head is positioned at 65t1p4s

Index. Figure 4 represents the working of traditional, referred, and proposed disk scheduling

algorithm to access all Memory Requests of Case-1. Figure 5 represents the total seek time and

disk access time required with respect to each disk scheduling algorithms for complete all

memory requests as per Case-1.

Figure 3: Disk queue for memory request of case-1

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

11

Figure 4: Working of all Disk-Scheduling algorithms for Case-1

Figure 5: Performance measure of all disk-scheduling algorithms for case-1

4.3 Case-2

Here we considered a situation with all memory request in descending order in Single Platter

Hard-disk Figure 6 represents the memory request of Case-2. Initially the head is positioned at

75t1p7s index. Figure 7 represents the working of traditional, referred, and proposed disk

scheduling algorithm to access all Memory Requests of Case-2. Figure 8 represents the total seek

time and disk access time required with respect to each disk scheduling algorithms for complete

all memory requests as per Case-2.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

12

Figure 6: Disk queue for memory request of case-2

Figure 7: Working of all Disk-Scheduling algorithms for Case-2

Figure 8: Performance measure of all disk-scheduling algorithms for case-2

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

13

4.4 Case-3

Here we considered a situation with all memory request in random order in Single Platter Hard-

disk. Figure 9 represents the memory request of Case-3. Initially the head is positioned at

165t1p7s index. Figure 10 represents the working of traditional, referred, and proposed disk

scheduling algorithm to access all Memory Requests of Case-3. Figure 11 represents the total

seek time and disk access time required with respect to each disk scheduling algorithms for

complete all memory requests as per Case-3.

Figure 9: Disk queue for memory request of case-3

Figure10: Working of all Disk-Scheduling algorithms for Case-3

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

14

Figure 11: Performance measure of all disk-scheduling algorithms for case

4.5 Case-4

Here we considered a situation with all memory request in ascending order in Multi Platter Hard-

disk. Figure 12 represents the memory request of Case-4. Initially the head is positioned at

140t1p0s index. Figure 13 represents the working of traditional, referred, and proposed disk

scheduling algorithm to access all Memory Requests of Case-4. Figure 14 represents the total

seek time and disk access time required with respect to each disk scheduling algorithms for

complete all memory requests as per Case-4.

Figure 12: Disk queue for memory request of case-4

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

15

Figure 13: Working of all Disk-Scheduling algorithms for Case-4

Figure14: Performance measure of all disk-scheduling algorithms for case-4

4.6 Case-5

Here we considered a situation with all memory request in descending order in Multi Platter

Hard-disk. Figure 15 represents the memory request of Case-5. Initially the head is positioned at

65t1p4s index. Figure 16 represents the working of traditional, referred, and proposed disk

scheduling algorithm to access all Memory Requests of Case-5. Figure 17 represents the total

seek time and disk access time required with respect to each disk scheduling algorithms for

complete all memory requests as per Case-5.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

16

Figure 15: Disk queue for memory request of case-5

Figure 2: Working of all Disk-Scheduling algorithms for Case-5

Figure 17: Performance measure of all disk-scheduling algorithms for case-5

4.7 Case-6

Here we considered a situation with all memory request in random order in Multi Platter Hard-
disk. Figure 18 represents the memory request of Case-6. Initially the head is positioned at

90t1p6s. Figure 19 represents the working of traditional, referred, and proposed disk scheduling

algorithm to access all Memory Requests of Case-6. Figure 20represents the total seek time and

disk access time required with respect to each disk scheduling algorithms for complete all

memory requests as per Case-6.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

17

Figure 18: Disk queue for memory request of case-6

Figure 19: Working of all Disk-Scheduling algorithms for Case-6

Figure 20: Performance measure of all disk-scheduling algorithms for case-6

4.8 Result Analysis

From the analysis of all the six cases, it is concluded that our algorithm performs better than all

traditional and latest modified disk scheduling algorithms, as per prescribed performance measure

of the disk scheduling algorithm. Table 3 represents the total performance measures of all

algorithms, considering all six cases. All five derived algorithms (ODSA, HDSA, RP-10, SMCC,

MRSA) focused on minimising the seek time. They did not consider to minimize the rotational

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

18

latency or data transfer time. The proposed disk scheduling algorithm minimises all three

performance measure of disk scheduling algorithm, Viz. seek time, rotational latency, data

transfer time. Therefore, the proposed algorithm was able to optimize the total disk access time by

33.53% and 7.51% in comparison with traditional and referred disk scheduling algorithms

respectively. Figure 21 represents the comparative analysis of average disk access time of all

algorithms in each case.

Along with that our algorithm will also be able to detect and manage the bad sectors of the hard-

disk. Once a memory index detected twice as inaccessible memory, then it transfers that index to

“Bad Sector List” table. Then it resolves the situation by finding a proper prescribed bit for that

index. This reduces n-2 number of un-necessary memory read, which in turn reduces the power

consumption of hard-disk by:

Energy Conserved = e*n-2. (e ~ 100 fj => Energy Consumed per one-bit memory access)

Table3 : Total performance measures of all algorithms

TOTAL

F
C

F
S

S
S

T
F

S
C

A
N

C
S

C
A

N

L
O

O
K

C
L

O
O

K

O
D

S
A

H
D

S
A

R
P

-1
0

S
M

C
C

M
R

S
A

M
O

D
S

B
S

M

TSKT

3
9

7

8

1
4

9

6

1
7

3

1

2
2

7

3

1
5

5

7

1
9

5

9

1
3

4

5

1
3

4

5

1
5

7

4

1
3

4

5

1
3

4

5

1
3

4

5

TRL

4
6

1

4
6

2

4
6

5

4
7

5

4
6

5

4
7

5

4
3

4

4
5

8

4
5

2

4
3

4

4
3

9

3
4

7

TDTT

2
0

0

2
0

6

2
0

6

2
0

5

2
0

6

2
0

5

2
0

7

2
0

5

2
0

6

2
0

7

2
0

4

1
9

4

TDAT

4
6

3

9

2
1

6

4

2
4

0

2

2
9

5

3

2
2

2

8

2
6

3

9

1
9

8

6

2
0

0

8

2
2

3

2

1
9

8

6

1
9

8

4

1
8

8

6

ADAT

3
8

.6

6

1
8

.0

3

2
0

.0

2

2
4

.6

1

1
8

.4

8

2
1

.9

9

1
6

.5

5

1
6

.7

3

1
8

.6

0

1
6

.5

5

1
6

.5

3

1
5

.7

2

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

19

Figure 21: Comparative analysis of average disk access time of all algorithms

As this algorithm resolve bad sector, the read/write head does not need to access a single index (a

particular position in hard-disk), multiple times, with the help of infrared/ blue-ray beams. So this

algorithm also reduces heat generation within the hard-disk by:

Heat reduced = h*n-2 (heat generated per bit access).

5. CONCLUSIONS

In this paper we proposed a new disk scheduling algorithm, MODSBSM. Here we demonstrate

the comparative analysis of proposed algorithm with respect to all traditional disk scheduling

algorithm, has been carried out in both single-platter and multi-Platter Hard-disk. The proposed

algorithm provides better performance metrics by minimizing the average disk access time. This

algorithm also able to detect and resolve the bad sectors of hard-disk. In future we want to

propose another scheduling algorithm for implementing in SSD.

REFERENCES

[1] Abraham Silberschatz, Peter B. Galvin, and Gerg Gagne, (2014) “Operating System Concepts”.

Willey India 9th Edition, pp 944.

[2] Andrew S. Tanenbaum, and Herbert Bos, (2014) “Modern Operating System”. Pearson 4th Edition,

pp 1080.

[3] Dhananjay M. Dhamdhere, (2006) “Operating Systems: A Concept-based Approach”. Mc Graw Hill

Third Edition.

[4] Amar Ranjan Dash, Sandipta Kumar Sahu, and Sanjay Kumar Samantra, (2015) “An optimized round

Robin CPU scheduling algorithm with dynamic time quantum”. International Journal of Computer

Science Engineering and Information Technology (IJCSEIT), Vol. 5(1), AIRCC, PP 7-26, DOI:

10.5121/ijcseit.2015.5102, arXiv preprint arXiv:1605.00362.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

20

[5] Amar Ranjan Dash, Sandipta Kumar Sahu, Sanjay Kumar Samantra, and Sradhanjali Sabat, (2015)

“Characteristic specific prioritized dynamic average burst round robin scheduling for uniprocessor

and multiprocessor environment”. International Journal. Of Computer Science Engineering and

Applications (IJCSEA), Vol 5(5), AIRCC, PP 1-20, DOI: 10.5121/ijcsea.2015.5501, arXiv preprint

arXiv:1511.02498.

[6] C. Mallikarjuna, and P. Chitti Babu, (2016) "Performance Analysis of Disk Scheduling Algorithms",

International Journal of Computer Sciences and Engineering, Vol. 4(5), pp 180-184.

[7] Sukanya Suranauwarat, (2007) "A Disk Scheduling Algorithm Simulator." The ASEE Computers in

Education (CoED) Journal, Vol. 8(3), pp 1-9.

[8] Manish Kumar Mishra, (2012) “An improved FCFS (IFCFS) disk scheduling algorithm”.

International Journal of Computer Applications, Vol. 47(13), pp 20-24.

[9] Margo Seltzer, Peter Chen, and John Ousterhout, (1990, January) “Disk scheduling revisited”. In

Proceedings of the winter 1990 USENIX technical conference, pp. 313-323.

[10] Saman Rasool, and Ritika Gakher, (2015) “Reformed FCFS Disk Scheduling Algorithm”.

International Journal of Computer Applications, Vol. 127(13), pp 38-41.

[11] Sourav Kumar Bhoi, Sanjany Kumar Panda, and Imran Hossain Faruk, (2012) “Design and

Performance Evaluation of an Optimized Disk Scheduling Algorithm (ODSA)”. International Journal

of Computer Applications, pp 28-35, arXiv preprint arXiv:1403.0334.

[12] Sandipon Saha, Md. Nasim Akhter, and Mohammod Abdul Kashem, (2013) “A New Heuristic Disk

Scheduling Algorithm”. International Journal of Scientific & Technology and Research, Vol. 2(1),

2013, pp 49-53.

[13] M. R. Mahesh Kumar, B. Renuka Rajendra, (2015) “An improved approach to maximize the

performance of disk scheduling algorithm by minimizing the head movement and seek time using sort

mid current comparison (SMCC) algorithm”. In Proceedings of 3rd International Conference on

Recent Trends in Computing 2015 (ICRTC-2015), Vol. 57, Elsevier, pp. 222-231, DOI:

10.1016/j.procs.2015. 07.468.

[14] Jainil Vachhani and Yash Turakhia, (2017) “Design and Performance Evaluation of Median Range

Scheduling Algorithm”. International Journal of Computer Application, Vol. 172 (4), pp 6-8.

[15] Priya Hooda, and Supriya Raheja, (2014) “A new approach to disk scheduling using fuzzy logic”.

Journal of Computer and Communications, vol. 2, pp 1-5, DOI: 10.4236/jcc.2014.21001.

[16] Kitae Hwang and Heonshik Shin, (1993) “New Disk Scheduling Algorithms for Reduced Rotational

Latency”. In Database Systems for Advanced Applications, pp 395-402, DOI:

10.1142/9789814503730_0045

[17] Karishma Singh, NIdhi, Divya Rastogi, and Dayashankar Singh, (2015) “Optimized Two Head Disk

Scheduling Algorithm (OTHDSA)”. In Proceeding Fifth International Conference on Advanced

Computing & Communication Technologies (ACCT-2015), IEEE, pp. 234-240, DOI:

10.1109/ACCT.2015.70

[18] Avneesh Shankar, Abhijeet Ravat, and Abhishek Kumar Pandey. (2019) "Comparative Study of Disk

Scheduling Algorithms and Proposal of a New Algorithm for Better Efficiency". In Proceedings of

2nd International Conference on Advanced Computing and Software Engineering (ICACSE) 2019.

Available at SSRN: https://ssrn.com/abstract=3349013 or http://dx.doi.org/10.2139/ssrn.3349013

[19] Alexander Thomasian, “Survey and analysis of disk scheduling methods”. ACM SIGARCH

Computer Architecture News, Vol. 39(2), 2011, pp 8-25.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No. 1/2/3, June 2019

21

[20] Anthony Hylick, Ripduman Sohan, Andrew Rice, and Brian Jones, “An analysis of hard drive energy

consumption”. In 2008 IEEE International Symposium on Modeling, Analysis and Simulation of

Computers and Telecommunication Systems, IEEE, (2008, September) pp. 1-10.

[21] Wentao Jiang, “Energy to Store One Bit”. coursework for PH240 Stanford University, 2018,

http://large.stanford.edu/courses/2018/ph240/jiang2/ (accessed on 09/06/2019)

Authors

Amar Ranjan Dash obtained his B. Tech Comp. Sc. from Biju Patnaik University

of Technology, India and M. Tech degree from Berhampur University, India.

Currently, He is pursuing his doctoral research. He has Ten research publications to

his credit. His research interests include Web Accessibility, Algorithm

Optimization, and cloud computing. He is a member of ACM & IEEE.

Sandipta Kumar Sahu has achieved his B. Tech. Comp. Sc. and M. Tech. Comp.

Sc. from Biju Patnaik University of Technology, India. He has two research

publication to his credit. His research interests include Computer Architecture,

Compiler Design, and Operating System.

B. Kewal has achieved his BCA degree from Berhampur University, Odisha, India.

Currently, He is pursuing his MCA Post graduation from Berhampur University,

Odisha, India. His research interests include Operating System, Algorithm

optimization, and Compiler Design.

