
International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

DOI : 10.5121/vlsic.2013.4110 123

REDUCTION OF BUS TRANSITION FOR

COMPRESSED CODE SYSTEMS

S. R. Malathi, R. Ramya Asmi

Department of Computer Science and Engineering,

Sri Venkateswara College of Engineering, Chennai, India
malathiraj@svce.ac.in, rramyaasmi@gmail.com

ABSTRACT

Low power VLSI circuit design is one of the most important issues in present day technology. One of the

ways of reducing power is to reduce the number of transitions on the bus. The main focus here is to present

a method for reducing the power consumption of compressed-code systems by inverting the bits that are

transmitted on the bus. Compression will generally increase bit-toggling, as it removes redundancies from

the code transmitted on the bus. Arithmetic coding technique is used for compression /decompression and

bit-toggling reduction is done by using shift invert coding technique. Therefore, there is also an additional

challenge, to find the right balance between compression ratio and the bit-toggling reduction. This

technique requires only 2 extra bits for the low Power coding, irrespective of the bit-width of the bus for

compressed data.

KEYWORDS

Low power VLSI, Bus transition reduction, Arithmetic coding, Compressed Code systems.

1. INTRODUCTION

Designs of portable consumer electronic devices such as mobile phones, PDAs, video games, and

other systems are increasingly demanding low power consumption to maximize the battery life,

reduce weight and improve reliability. These types of power sensitive devices are usually

equipped with microprocessors as the processing elements and memories as the storage units.

With current CMOS technology, a large portion of power consumption is in the form of dynamic

power, which in turn is determined by the bit switching (bit-toggling) and the switched load

capacitance. Since the microprocessor fetches instructions over the memory bus every clock cycle

and bus lines to memory are often much longer than buses within the processor, the power

consumed by the bus due to instruction fetch is significant.

So far, research for the instruction data bus switching reduction has generally concentrated on

code compression. The compressed code causes less memory access, thus reducing the bus

activity. Compression requires complicated compression/decompression units, which reside in the

critical path and can considerably affect the overall system performance. Apart from the memory

optimization aspect of code compression, it is desirable to minimize bit-toggling on the bus, since

the energy consumed on the bus is proportional to the number of bit-toggles. If h denotes the total

number of toggles on one bus-line, Ceff-line is the bus capacitance taking into account cross talk

(interaction between other lines) and V is the voltage difference between high and low then the

energy consumed on one bus-line is given by

Energybus-line =0.5*h*Ceff-line*V
2

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

124

This explains reason for reducing the number of bit-toggles. So we concentrate only on bit-

toggling minimization and therefore our results show improvement only on bus power

consumption.

In this paper, we investigate a different approach—bus encoding [11]. Most of existing bus

encoding schemes are effective for address or data memory buses and mainly utilize correlations

of transferred data. For example, T0 [1] and Gray encodings [2] use the temporal correlation of

data on address buses, while the bus-invert encoding [3] exploits the spatial transition correlation

among the data bits. Our investigation is on the instruction data buses and found that the bit

switching behavior of the instruction data bus is different from those of the other types of buses.

Figure 1 shows an experimental result of the bit transition probability for three different memory

buses: instruction memory address bus (imab) instruction memory data bus (imdb) and data

memory data bus (dmdb) .As can be seen from Figure 1, switching activity on the instruction

address bus concentrates on the low section of bits, largely due to the sequential access of

instruction memory. For the data memory data bus, the switching activity spreads over all bus bits

with almost 50% switching probability. But for the instruction data bus, the switching probability

is not evenly distributed. Some bits show very low switching activity. Therefore, most of existing

encodings for address buses and data memory data buses do not suit for encoding of the

instruction data buses.

Figure 1. Bit switching probability of different buses.

2. EXISTING WORK

Bus encoding techniques for low power consumption have been studied in the last couple of

decades. The Gray encoding [2] was proposed for the instruction address bus where binary

addresses are converted into Gray code for bus transmission. Another approach [1] for address

bus encoding is the asymptotic zero-transition activity encoding, known as T0. For the

instructions of a program to be executed sequentially without any branches, T0 can ideally

achieve zero bus switching. In [4], Henkel and Lekatsas presented an adaptive address bus

encoding (A2
BC) for low power address buses in the deep submicron design, where the coupling

effects of bus lines were considered.

Stan and Burleson [3] proposed the bus-invert (BI) coding. This method uses either the original or

the inverted value to encode the data bus. If the current value to be sent over the bus causes more

than half of the bus bits to switch, its inverted value will be transferred on the bus. For the wide

data bus without evenly distributed random data, the same authors proposed a partitioned bus-

invert coding, partitioning the wide bus into several narrow sub-buses and applying the BI

encoding to each sub-bus. This partitioning approach improves the switching reduction at the cost

of extra invert control lines. The partitioned bus-invert approach has been modified and proposed

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

125

as partial bus invert (PBI) coding [5] for the address bus. In the same paper, they extended this

approach to multi way partial bus-invert (MPBI), where highly correlated bus lines were clustered

into multiple sub-buses and each of them was encoded independently.

A dictionary-based approach to reduce data bus power consumption has been introduced in [6].

This approach exploits frequent data patterns detected from the application trace and uses two

synchronized dictionaries on both sides of the bus. The dictionaries cache recently transferred

data so that the same data that can be accessed in the local dictionary will not be transferred on

the bus to reduce bus switching activity.

For instruction bus power reduction, most previous researchers have focused on code

compression. The pioneer work by Wolfe and Chanin [7] mainly aimed for program memory

reduction. With their approach, the total bus switching activity can be reduced via compressed

codes that are transferred over the bus. A decompression unit is required to restore each

instruction before execution. Scheme in [8] also compresses instructions and compacts more

compressed instructions into one bus word to reduce the total number of memory access, hence

the total number of bus switches. This code compression scheme was extended in [9] to further

reduce switching between consecutive instruction words.

Petrov and Orailoglu [10] introduced an instruction bus encoding, where the major loops are

encoded and stored in the memory so that when they are fetched, the switching activity on the bus

is minimized. This approach can achieve good switching reduction but requires a complex code

transformation and control in the decoding logic.

In [15], codeword assignment through heuristics is used to reduce the overall power

consumption. In [16] the authors use a reconfiguration mechanism, called Instruction Re-

map Table, to re-map the instructions to shorter length code words. Using this

mechanism, frequently used set of instructions are compressed. This reduces code size

and hence the cost. The same mechanism is used to target power reduction by encoding

frequently used instruction sequences to Gray codes. Such encodings, along with

instruction compression, reduce the instruction fetch power.

3. PROPOSED WORK

3.1 Proposed Method for Reducing Bus Transition

In this paper, we apply shift-invert coding technique onto the compressed data using Arithmetic

Coding technique which reduces the bit-toggling to a large extent.

Figure 2. Flow diagram of the proposed method

Compression using

Arithmetic Coding

Decompression using

Arithmetic Coding

Encoding using Shift

Invert Coding

Power Reduction

during bus transition

Decoding using Shift

Invert Coding

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

126

3.2 Overview of Arithmetic Coding

Shannon [14] showed that for the best possible compression code (in the sense of minimum

average code length), the output length contains a contribution of -lg p bits from the encoding of

each symbol whose probability of occurrence is p. If we can provide an accurate model for the

probability of occurrence of each possible symbol at every point in a file, we can use arithmetic

coding to encode the symbols that actually occur; the number of bits used by arithmetic coding to

encode a symbol with probability p is very nearly -lg p, so the encoding is very nearly optimal for

the given probability estimates. It is used to encode an entire file into single interval. The most

important advantage of arithmetic coding is its flexibility: it can be used in conjunction with any

model that can provide a sequence of event probabilities. This advantage is significant because

large compression gains can be obtained only through the use of sophisticated models of the input

data. Models used for arithmetic coding may be adaptive, and in fact a number of independent

models. The other important advantage of arithmetic coding is its optimality. Arithmetic coding is

optimal in theory and very nearly optimal in practice, in the sense of encoding using minimal

average code length.

3.2.1 Arithmetic coding algorithm and its implementation

The algorithm for encoding a file using arithmetic coding works conceptually as follows. With

given probabilities of symbols, the algorithm works in three steps.

1) Starts with a “current interval” [H, L) set to [0, 1).

2) For each symbol of the input file, perform steps (a) and (b).

(a) Subdivide current interval into subintervals, one for each symbol.

(b) The size of a subinterval is proportional to the probability that the symbol will be the

next symbol in the file. Then select the subinterval corresponding to the symbol that

actually occurs next and make it the new current interval.

3) Output enough bits to distinguish the final current interval from all other possible final

intervals

The length of the final subinterval is clearly equal to the product of the probabilities of the

individual symbols, which is the probability p of the particular sequence of symbols in the file.

The final step uses almost exactly -lg p bits to distinguish the file from all other possible files.

The end of the file is indicated using either a special end-of-file symbol coded just once, or some

external indication of the file's length.

A. Pseudo code for arithmetic encoding is as follows:

Set lower bound = 0

Set upper bound = 1

While there are still symbols to encode

 Current range = upper bound - lower bound

Upper bound = lower bound + (current range × upper bound of new symbol)

Lower bound = lower bound + (current range × lower bound of new symbol)

end while

B. Pseudo code for arithmetic decoding is as follows:

Encoded value = encoded input;

While string is not fully decoded,

identify the symbol containing encoded value within its range;

Current range = upper bound of new symbol – lower bound of new symbol

Encoded value = (encoded value - lower bound of new symbol) ÷ current range

end while

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

127

Example 1: Encoding the file containing symbols “bbb” using arbitrary fixed probability

estimates P (a) = 0.4, P (b) = 0.5, and P (EOF) = 0.1[12] where P(a),P(b) and P(EOF) be the

probability of a, b and EOF. Encoding proceeds as follows:

Table 1. Probability and Range of the symbols

Symbol Probability Range

a 0.4 [0.0,0.4)

b 0.5 [0.4,0.9)

EOF 0.1 [0.9,1.0)

Range is calculated by using cumulative frequency as shown in Figure 3;

Figure 3. Range calculation

The result of encoding the symbol “bbb” using the pseudo code for encoding is shown in the

Figure 4. The symbol “bbb” till end-of-file is encoded as [0.8125, 0.825). To decode, the lower

bound of the target interval [0.8125, 0.825) is taken. The lower bound is 0.8125. Apply arithmetic

decoding algorithm till all input symbols are met. The encoded input is lower bound of the target

interval. The output of the decoding is “bbb”. The idea of arithmetic coding originated with

Shannon in his seminal 1948 paper on information theory [14].

Figure 4. Arithmetic encoding of symbol ‘bbb’

The basic implementation of arithmetic coding has two major difficulties: the shrinking current

interval requires the use of high precision arithmetic, and no output is produced until the entire

file has been read. The most straightforward solution to both of these problems is to output each

leading bit as soon as it is known, and then to double the length of the current interval so that it

reflects only the unknown part of the final interval. Witten, Neal, and Cleary [13] added a clever

mechanism for preventing the current interval from shrinking too much when the endpoints are

close to ½ but straddle ½. In that case we do not yet know the next output bit, but we do know

that whatever it is, the following bit will have the opposite value; we merely keep track of that

fact, and expand the current interval symmetrically about ½. This follow-on procedure may be

repeated any number of times, so the current interval size is always longer than ¼. The coding

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

128

and interval expansion working [12] is described in detail. This process takes place immediately

after the selection of the subinterval corresponding to an input symbol. The following steps are

repeated as many times as possible:

a) If the new subinterval is not entirely within one of the intervals [0, ½), [¼, ¾), or [½,

1), stop iterating and return.

b) If the new subinterval lies entirely within [0, ½), output 0 and any 1s left over from

previous symbols; then double the size of the interval [0, ½), expanding toward the

right.

c) If the new subinterval lies entirely within [½, 1), output 1 and any 0s left over from

previous symbols; then double the size of the interval [½, 1), expanding toward the left.

d) If the new subinterval lies entirely within [¼, ¾), keep track of this fact for future

output; then double the size of the interval [¼, ¾), expanding in both directions away

from the midpoint.

Example 2: The detail of encoding the same file in example 1 is continued. The “follow” (in

Table 2) output in the sixth line indicates the follow-on procedure. We keep track of our

knowledge that the next output bit will be followed by its opposite; this opposite" bit is the 0

output in the ninth line. The encoded file is 1101000, as before. Clearly the current interval

contains some information about the preceding inputs; this information has not yet been output,

so we can think of it as the coder's state. If ‘a’ is the length of the current interval, the state holds-

lg a bit not yet output. In the basic method (illustrated by Example 1) the state contains all the

information about the output, since nothing is output until the end. In the implementation

illustrated by Example 2, the state always contains fewer than two bits of output information,

since the length of the current interval is always more than ¼. The final state in Example 2 is [0;

0.8), which contain -lg 0.8 ≈ 0.322 bits of information.

Table 2. Illustration of Interval expansion procedure

3.4 Overview of Shift-invert coding

The main idea in this technique is to optionally shift the data bits by one bit position (either left-

shift or right-shift) if the shifting reduces the number of bus transitions [11]. And it requires only

2 extra bits for the low power coding, regardless of the bit-width of the bus and does not assume

anything about the nature of the data.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

129

The terminologies used are

w = Width of the string

k = Time instant

α = Data yet to be transmitted.

β = Data transmitted on the bus.

α
k
 = αw-1

k
 , αw-2

k
,.......α0

k
 represents a binary data string at any time instant k.

β
k
= Data transmitted on the bus at time k.

Note that the bit width w’ of the bus (i.e., the encoded data that gets transmitted on the bus) could

be greater than w depending on the coding scheme used. For instance, in default Bus Invert

Coding [3], w’ = w + 1. For variations of Bus Invert Coding, w’ can be greater than w+1. In any

coding scheme based on bus inversion, the value of the ith
 bit, bi on the bus will be either the data

value αi or 1-αi. Thus, for all i, 0 ≤ i < w’,

 bi = αi , uninverted bit OR

 bi = 1 – αi , inverted bit.

There are four encoding schemes presented in shift –invert coding. These encoding schemes are

defined as follows:

(1) Default: No encoding is done (just same bits are passed). The default operation on a w-bit data

is defined as αi
(DEFAULT) = αi , 0 ≤ i < w’.

(2) Left-shift: Data bits are circularly left-shifted by one position. The Left-shift operation on a w-

bit data is defined as, αi
(LS) = αi-1 ; 0 ≤ i < w’, and α0

(LS) = αw’-1.

(3) Right-shift: Data bits are circularly right-shifted by one position. The Right-shift operation on

a w-bit data is defined as, αi
(RS)

= αi+1; 0 ≤ i < w’-1, αw’
(RS)

= α0.

 (4) Invert: Inverts all bits. The invert operation on w-bit data is defined as, αi
(INV)=1-αi ; 0

,≤ i < w’.

Example 3: Consider the following example. (Ignore the extra bits used in the encoding scheme

for a moment).

Let β k = 01100101 (assume a 8-bit bus) and the new data at time k+1, αk+1= 10110011;

Now let us see how it reduces the bit-toggling in the following Table 3.

Table 3. Number of bit-toggling in each encoding scheme

Data at time - k β
k

01100101 No. Of bit-toggling

Data at time – k+1 αk+1 10110011 5

Data at time – k+1(LS) α
k+1(LS)

 01100111 1

Data at time – k+1(RS) αk+1(RS) 11011001 5

Data at time – k+1(INV) α
k+1(INV)

 01001100 3

In this example, the number of transitions N between βk and αk+1is 5. In the case of Bus Invert

Coding [3], let us see whether it is beneficial (i.e., whether the number of 0 to 1 and 1 to 0

transitions are reduced) to send αk+1(INV) over the bus. The number of transitions NINV

between βk and αk+1(INV) is 3. Since NINV< N/2, in the Bus Invert Coding [3] technique,

αk+1(INV) will be sent over the bus at time k+1. Now, let us see the number of bit toggles when

we left-shift the data αk+1 once, as defined above. The left-shifted data at time k+1 becomes,

αk+1(LS)=01100111.Comparing this data with βk = 01100101, the number of transitions NLS

between a βk and αk+1(LS) is just 1, which is better than the 3 transitions occurring from the

inverted data αk+1(INV) .If data is right-shifted then NRS is 5. Thus, in this case, it is clear that

by sending the left-shifted data, we can reduce the number of transitions even further than the

reduction in bit toggle obtained from sending the inverted data. For each new data that needs to

be sent over the bus, we evaluate the transitions N, NINV , NLS and NRS between βk and αk+1,

αk+1(INV), αk+1(LS), and αk+1(RS) respectively. We then choose the encoding that results in

the least number of transitions. The pseudo code of shift-invert coding [11] is shown as follows;

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

130

The procedure num_trans (α, β) returns the number of bit-positions in which the passed in

vectors α and β differ. Note that the data that gets sent over the bus, βk+1 can be one of αk+1,

αk+1(INV), αk+1(LS), αk+1(RS). Thus, we need to tag the bus with 2 additional bits that indicate

the encoding that was used. This will be used to decode the bus value appropriately at the

receiving end. Thus, in Shift-Invert coding, the width of the bus w’ = w + 2, where w is the width

of the data vector. 2 additional bits as compared to 1 additional bit in default Bus Invert Coding

[3] is used in Shift Invert Coding [11].

4. HARDWARE MODEL

One way of hardware realization for the Shift-Invert coding is shown in Figure 5. The inputs to

the encoder are αk+1 and βk where k denotes the time instance. For illustration purposes, block-

diagram of Shift Invert coding for an 8-bit data is shown. Thus, the bit width of αk+1 is 8 and the

bit width of βk is 10 which includes the two control signals (C1 C0) used to indicate the mode of

encoding. The blocks named “Default”, “Left-Shift”, “Right-Shift” and “Invert” indicate the 4

encoding schemes used in Shift Invert coding technique. XOR blocks are used to compare and

capture the transition between the 8 bits of βk and αk+1. Each of the XOR blocks take two 10-bit

inputs and generate one 10-bit output. One of the two 10-bit inputs is the signal βk on the bus at

time instant k. The other input to the XOR blocks is the 8-bit data signal αk+1- in some encoded

form (depending on the encoding scheme). Note that the bit width of αk+1 is only 8, and the other

2-bits labeled SHIFT-INVk are the 2 additional bits used to indicate the scheme used at time

instance k+1.Table 4 shows a bit representation to indicate the encoding scheme used. For

example, if the input data is left-shifted before we send it over the bus, the two control bits will be

assigned the value 01. Likewise, the other bit assignments are shown in the table.

Table 4. Encoding for Shift Invert coding

Default(no encoding) 00

Left-shift 01

Right-shift 10

Invert 11

The 10:4 Adder-Counter generates an output that can be anywhere in the range [0...10]. This

implies that 10:4 Adder counter will generate a 4-bit output. These 4-bits indicate the total

number of transitions (i.e. total no. of bit-toggling) on the bus for each type of encoding. Note that

in this example, the data bus is assumed to be 8-bits wide and we used an Adder counter block

that takes 10 input bits and generats a 4- bit output. In general, for a w-bit data, we will need a

(w+2) - bit Adder-Counter block that generates a [log2 (w + 2)] bit output. The outputs from the

four 10:4 Adder-Counter blocks are sent to a 4-way 4-bit comparator which compares and finds

the encoding scheme that has the least number of transitions. The comparator then generates the

two control bits C1C0 that indicate the encoding scheme chosen for decoding at time instant k+1.

The encoded data that has the least number of transitions and the control bits C1C0 are then sent

over the bus as βk+1.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

131

Figure 5. Hardware model for shift-invert coding for bit bus

Figure 6. 10:4 Adder counter circuit

A 4:3 Adder counter circuit will be needed for counting number of 1’s if the data bus size is 32

bits. Suppose a 32+2 bit, where 32 bit is data and 2 bit is the encoding bits with a total of 34 bit.

To count the number of 1’s in 34 bit, three 10 bits can be given as a input to 10:4 adder counter

(10+10+10=30) and the remaining 4 bits are given as a input to the 4:3 adder counter. Finally,

adding all the values of adder counter will result in number of bit-toggling in the two 34 bits

compared.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

132

Figure 7. A 4:3 Adder-Counter Circuit

5. EXPERIMENTAL RESULTS

As shown in the architecture of the proposed method, Shift Invert coding technique [9] was

applied on data compressed using Arithmetic Coding technique. The implementation was done

using C++ followed by Modelsim. Compression using Arithmetic coding was done using C++.

The compressed binary data generated was given as input test bench to the simulated hardware

model discussed here and timing wave generated using Modelsim to study the bus transition. The

bus width was varied as an integer power of 2 and for each width of the bus 100000 simulation

cycles were performed. The average number of bus transitions for bus widths of 8, 16 and 32 for

the Bus Invert Coding and Shift Invert Coding techniques for the uncompressed and compressed

data is listed in Table 5 and Table 6. From Table 5 it can be observed that Shift invert coding

reduces the bus transition by an average of 5% than Bus Invert Coding for any random data on a

given bus width. When the same encoding techniques are applied on compressed data having

more number of transitions due to removal of redundant information, Shift Invert Coding

performs much better than Bus Invert Coding as shown in Table 6. The bus transition increases

by 53% for Bus Invert Coding and only 4.5% for Shift Invert Coding when applied on

compressed data.

Table 5. Average number of bus transitions for random data

Table 6. Average number of bus transitions for compressed data

 Average number of Transitions

per cycle for bus width in 2
n

8 16 32

Default Data (no encoding) (DEF) 4.00 8.00 16.00

Bus Invert coding applied on Random Data (BIC) 3.27 6.83 14.23

Shift Invert Coding applied on Random Data (SINV- RD) 3.17 6.60 13.80

 Average number of Transitions

per cycle for bus width in 2
n

8 16 32

Data compressed using Arithmetic Coding (AC-COMP) 5.00 10.00 22.00

Bus Invert coding applied on Data compressed using

Arithmetic Coding (AC-BIC)
4.9 9.80 18.85

Shift Invert Coding applied on Data compressed using

Arithmetic Coding (AC-SINV)
3.21 6.88 14.50

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

133

6. CONCLUSIONS

The proposed method is a combination of Arithmetic Coding and Shift-invert Coding for

reducing bus transitions and thereby reduce the power consumed in embedded systems.

Arithmetic coding is used to reduce the redundancy in data and thereby reduce the memory

access. It also gives high compression ratio. Since it reduces identical data, most of the data in the

file is unique .This unique data causes more bit-toggling during data access. To reduce this bit

toggling, Shift-invert coding is used on the compressed code. From the experiments conducted it

is been proved that Shift Invert Coding reduces bus transition significantly than Bus Invert

Coding. Comparison of the results with the work done on similar platform could not be done due

to unavailability of such application. As a future work Shift Invert coding can be applied to other

compression techniques available for various systems and studied.

REFERENCES

[1] L. Benini, G. de Micheli, E. Macii, D. Sciuto, and C.Silvano, (1997) “Asymptotic zero transition

activity encoding for address busses in low-power microprocessor-based systems,” in Proceedings of

the 7th IEEE Great Lakes Symposium on VLSI, pp. 77–82.

[2] C.-L. Su, C.-Y. Tsui, and A. M. Despain, (1994) “Saving power in the control path of embedded

processors,” IEEE Design and Test of Computers, vol. 11, no. 4, pp. 24–30.

[3] M. R. Stan and W. P. Burleson, (1995) “Bus-invert coding for low power i/o,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 3, no. 1, pp. 49–58.

[4] J. Henkel and H. Lekatsas, (2001) “A2BC : adaptive address bus coding for low power deep sub-

micron designs,” in Proceedings of the 38th Annual Design Automation Conference (DAC ’01), pp.

744–749.

[5] Y. Shin, S.-I. Chae, and K. Choi, (2001) “Partial bus-invert coding for power optimization of

application-specific systems,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 9, no. 2, pp. 377–383.

 [6] T. Lv, J. Henkel, H. Lekatsas, and W. Wolf, (2003) “A dictionary based en/decoding scheme for low-

power data buses,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no.

5, pp. 943–951.

[7] A. Wolfe and A. Chanin, (1992) “Executing compressed programs on an embedded RISC

architecture,” in Proceedings of the 25th Annual International Symposium on Microarchitecture

(MICRO ’92), pp. 81–91.

 [8] H. Lekatsas, J. Henkel, and W. Wolf, (2000) “Code compression for low power embedded system

design,” in Proceedings of the 37
th

 Design Automation Conference (DAC ’00), pp. 294–299.

 [9] H. Lekatsas, J. Henkel, and W. Wolf, (2005) “Approximate arithmetic coding for bus transition

reduction in low power designs,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 13, no. 6, pp. 696–706.

[10] P. Petrov and A. Orailoglu, (2004) “Low-power instruction bus encoding for embedded processors,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 8, pp. 812– 826.

[11] Jayapreetha Natesan and Damu Radhakrishnan, (2004) “Shift Invert coding (SINV) for low power

VLSI,” Proceedings of EUROMICRO Systems on Digital System Design (DSD’04), pp 190-194.

[12] P. G. Howard and J. S. Vitter, (1992) “Practical implementations of arithmetic coding,” Image and

Text Compression. Norwell, MA: Kluwer Academic, pp. 85–112.

 [13] I. H. Witten, R. M. Neal, and J. G. Cleary, (1987) “Arithmetic coding for data compression,”

Commun. ACM, vol. 30, no. 6, pp. 520–540.

[14] C.E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J.27 (July 1948), 398-

403.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

134

[15] Balaji Vaidyanathan, Yuan Xie, (2006) “Crosstalk-Aware Energy Efficient Encoding for Instruction

Bus through Code Compression”, In proc. of IEEE International SOC Conference. Pp193-196.

[16] Subash Chandar, Mahesh Mehendale & R. Govindarajan, (2006) “Area and Power Reduction of

Embedded DSP Systems using Instruction Compression and Re-configurable Encoding”, Journal of

VLSI Signal Processing Systems, Volume 44, Issue 3, pp 245 – 267.

